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ABSTRACT

This report is concerned with the discription of the development
and application of a stochastic crack growth model. It is built as a
discontinuous Markov process and is inhomogeneous with respect to
the number of cycles required for the crack to reach a specified crack
length. The model is then used to describe the evolution of the crack
length in terms of growth curves, each of whose points possess equal
probability of advancing from one position to another forward
position. The validity of the model is established by applying it to
constant as well as to variable amplitude loading. In those
applications the theoretical constant probability crack growth curves
generated by the model were compared to those experimentally
obtained using Al 7075-T6 and Al 2024-T3 materials for constant-
amplitude loading while Ti-6Al1-4V was used in single overload
application. Results of these comparisons indicate the ability of the
proposed model, when fitted with parameters whose values can be
obtained from a limited numbers of experimental tests, to predict the

crack growth statistics under different loading conditions.
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CHAPTER 1

INTRODUCTION

Prediction of the fatigue crack growth process is generally made by
using one of the determiristic crack growth laws which views the
process as continuous in time and state. Under these laws the growth
rate is calculated from the experimental knowledge of the applied
stress, current crack length and other influencing parameters. As
pointed out by Lauschmann[1], three applications of the mean-value
operator on the crack growth are implicitly invalued in  standard
concepts of the growth law: averaging along the crack front,
averaging in the direction of crack propagation close to the given
crack length and averaging over individual realization of the process.
This averaging technique provides the advantage of simplicity and
the ability to respond to changes in the process's physical conditions.
It suffers, however, from the inability to express the process's
inherent random properties, a factor critical to engineering design
and reliability management. The use of statistical distributions or
probabilistic models thus becomes a necessary tool {or a more
reliable prediciion cf crack growth. In this approach one can
distinguish three different groups of probabilitic moudels. The first
group, see for example references{2-7], depends on the introduction
of random variables to replace the constants in the appropriate
deterministic law. The second group, examples of which are shown in

references[8-10], introduces a joint probability distribution whose




variables are crack length and number of loading cycles. The last
group of probabilistic models assigns a non-decreasing evolutionary
feature to the growth process by using the concepts of the stochastic
theory, in particular, the Markov process. Detailed analysis of these
different types of models is given in reference[11]. The work in this
research program falls within the definition of the last group, i.e. the
stochastic Markov model. The first generation of these models,
represented in the work of Bogdanoff et al[12-15], Ghonem et
al{16,17] and Sedlacek[18], while having the ability to describe the
random crack growth process in defined cases, has difficulty in
estimating its predictive ability to cases where no experimental data
i1s available. In recent years a different generation of stochastic
models has evolved. In these models, variability in the process is
taken into account by means of generalizing the growth law, using
the stochastic theory, into a probability form. The work of Ghonem
and Dore[19] and others[20-23] are examples of this approach. The
purpose of this report is to describe the theoretical and experimental
work that has been carried out in developing the model of Ghonem
and Dore[19] termed the constant probability crack growth model.
This description will be covered in the following three chapters. The
mathematical elements of the model are introduced in chapter II,
which will also deal with the correlation between the elements and
the micro-physical condition of the growth process. The experimental
set-up and procedure used for verifying the model in the case of
constant-amplitude loading will be discussed in this chapter. Chapter
I deals with an extension of the model base to include the case of

random loading by utilizing a simple single overload spectrum. In




this chapter retardation experiments and their relation to the
estimation of the crack growth law in the delayed zone will be
described. The last chapter summarizes the findings of this research
program and suggests avenues for further model refinement and
application. Mathematical derivations and experimental procedures
which have been published in literature during the course of this
research program will not be repeated in the main text of the report.
Reference will be made to these publications, some of which will be

included as appendices.




CHAPTER II

COSTANTANT PROBABILITY CRACK GROWTH MODEL

2.1 Mathematical Elements

Formulations of this model and its theoretical development have
been detailed in references [11, 19], see appendix A and C. In brief
summary, the model is based on the view that the crack front is
identified as having a large number of arbitrarily chosen points.
While each of these points can propagate under repeated cyclic
loading in three dimensional geometry. The model considers only the
mode I crack propagation along a plane perpendicular to that of the
externally applied load. The fracture surface is divided into equally
spaced states each of which has a width equal to the expected
experimental error Ax. Adhering to the mechanistic properties of a
propagation crack and considering the growth process to be
evolutionary discrete state and time-inhomogeneous, the model

yields a crack survival probability which is written as:

In P,G)=-/Adi +L (1)

where P,(i) is the probability of the crack tip being in the state r

when Ai cycles elapsed, A, is the transition intensity parameter at

state T and L is an integration constant.




The solution of equation (1) depends on the mathematical
definition of A,. Earlier work of Ghonem and Provan|[l6, 17|

considered A, linearly dependent on r in the form

A, =TA (2)

where A is a material constant. This yields a growth process well
described as a Markovian linear birth process. Difficulties in this

approach have been analyzed in the reference[ll].

In the present program, A, was established as a crack length, cycle
and stress dependent parameter in the form
Ar = L(r) ex (3)
where L and k are state position dependents (see Appendix A). This

equation in conjuction with equation (1) yields a probabilistic crack

growth equation in the form

In P(1) = B( ekl - gKi) 12

In P,(i) =0 1 < 1,

the parameter B, K and [, depend on state r through the

experimental functional forms




nl
B =T
n2

K=c,r (5)
I, =c, ( (-1 - )

where c; and n, are constants depending on load conditions,

enviroment, etc. Equations (4) and (5) are the basic results. They are
used to construct constant probability crack growth curves. The
constants in equation (5) can be calculated by considering the crack
growth curve obtained by using a continuous equation as the
P,(i)=0.5 curve. This can be done numerically and the constant
probability crack growth curves can be established under any
loading conditions without the need to perform a large number of
fatigue tests. The results of this approach, when applied to data
proceeded by Virckler et al[24] on Al 2024-T3, were in agreement
with the experimental curves with an average error in the
theoretical curves estimated at 5% (see reference[19] and Appendix

A for detailes of this application).

2.2 Experimental Verification

In order for the model to have a wider scope of application, a
verification of the model was carried out for different loading
conditions on the same material. An in-house experimental program
was followed, during 1985 and 1986. on Al 7075-T6. In this
program, tests were conducted at three different stress levels
(R=4,5,6), and at each stress level sixty replications were employed,

crack length versus number of cycles was measured using a




photographic technique. The crack length measurements obtained
were from 9mm to 23mm on center crack retangular specimens with
dimensions of 320mm x 10lmm and the thickness of 3.175mm.
Diagrams of sample functions were obtained and converged into
constant probability crack growth curves for each test condition.
Equations (4) and (5) were then employed to obtain the theoretical
constant probability crack growth curves for each corresponding test
loading condition. Comparision with experimental data yielded very
good correlation. The experimental program, procedure,
measurement technique and analysis are described in detail in

reference{11, 25| and Appendix B.




CHAPTER III

VARIABLE-AMPLITUDE LOAD APPLICATION

3.1 Introduction

A practical load spectrum contains overloads or underloads which
bring about crack retardation or acceleration respectively. Single
tensile overload represents the most basic and simplest situation
involving retardation, see Fig. 1. Various researchers have attempted
to develop predictive crack growth models involving random loading
by correlating the transient effects of retardation with a wide range
of wvariables associated with loading, metallurgical properties,
environment, etc. The models are generally built ar_ound one of
serveral suggested retardation mechanisms. While no one mechanism
can offer interpretations of all retardation characteristics. It 1is
possible to identifiy the principal mechanisms as:

1. Compressive residual stress created in the overload plastic zone
due to the clamping action of the elastic material surrounding this
zone[25-29].

2. Crack tip blunting, especially in materials with work hardening
properties, which leads to a decrease of the actual AK at the crack tip
[30].

3. Crack closure due to crack surface contact above minimum load
as a result of the residual tensile strain in the material element in
the wake of the crack tip. This mechanism is predominant under a

plane strain condition[31, 32].
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Fig.

following a tensile peak ovdrload

1 Different cases of transient crack growth behavior




4. Crack plane orientation; the plane of a mode I fatigue crack has
a specific orientation in relation to the applied stress. Under overload
condition there can be a change of crack plane orientation producing
transient effects[33].

5. Metallurgical factors, such as yield strength[34], type of
precipitates[35] and strain hardening / softening characteristics[36].

As pointed out by Arone[37], almost all these mechnism can be
expressed in term of the effective stress intensity factor concept
which permits the calculation of the crack growth rate after overload
in the same form as for the constant-amplitude loading except that
the stress intensity factor is replaced by its effective value. The
value is generally expressed in terms of load parameters,
environmental conditions, material properties and specimen (or
component) geometry. The defficiency in this approach is that, again,
it does not take into account the inherent randomness of the
retardation phenomenon[39] which is manifested in the high degree
of scatter observed in retardation experiments(38]. The work
presented in this chapter is an attempt to extend the concept of the
constant-probability crack growth model to include the transient
retardation effects. This is achieved by introducing an effective
stress intensity parameter, AK.y, into the definition of the transition
intensity of the stochastic crack growth process. By considering the
load interaction effects in an appropriate expression of AK.  the

model generates a unified probability growth law that can be used to

10




predict scatter in complex random load history.

3.2 Proposed Model

3.2.1 Mathematical Elements
The constant-probability crack growth equation (1) depends on the

determination of the transition intensity parameter A,. In Appendix C

it has been shown that

. = L Ai= (6)
where L depends on the material, the crack position (r) and stress
conditions (Ao and R).

One can thus be more specific in the above definition by rewriting

it as :

A= Cifi(Ao, R) fy(a) Aie (7)

both f, and f, can be expressed as a joint function expressing the

effective crack tip stress intensity factor at position r. i.e.

A, = C, f3(AKesr, R) Aio (8)

where C; and o are material constants.

11




This transition intensity is, in fact, similar to that proposed by
Ditlersen and Sobczyk[39]. By substituting (8) in (1) and setting a

boundary condition that Pr(i)=1 when Ai = 0, one obtains

Ai = f(AK. R) (- In P(i))° (9)

l1+a B - 1
where  f(AKefr.R)=( ——)" [f3(AKerr,R)]* and B =70

The equation above defines the number of cycles required for the
crack tip, under the driving force of f(AKefr, R) to advance from state
r to state r+l (i.e. from crack length a to a+Aa) with a survival
probability P.(i). When P.(i) is kept constant, while incremental
values of Ax, i.e. crack length increments, are substituted in an
appropriate form of f(AKef, R) a crack growth curve whose points
posses the same propagation probability, can be generated.

The critical element in equation (9) is the determination of an
approriate f(AKer, R) which includes the effects of overload. This is

the subject of the following section.

3.2 f(AKeff, R) During Retardation

From the introduction of this chapter and the extensive review on
the subject of overload[41], the principal would-be mechanism
responsible for crack retardation is the closure stress resulting from
the induced plasticity in the wake of the crack and the constraining
compressive residual stress in the overload plastic zone in front of
the crack tip. If one recognizes that these two effects act

simultaneously, effects to define the corresponding effective stress-

12




intensity factor would be more difficult than operating in a region
where only one effect plays the major role. Closure stress is defined
as the stress required to fully open the crack. If an externally
applied load is set above the closure stress level, one can assume that
f(AKesf, R) can be calculated by accounting only for the crack tip
compressive residual stress. This condition was achieved by carrying
out closure experiments on compact tension specimen made of rolled
sheets.

and annealed Ti-6Al1-4V material Specimen geometry is

shown in Appendix D while material composition is listed in table 1.

Fe

Al

0.026

0.09

0.011

5.8

5.8

0.008

0.14

Table 1 Chemical Composition of Ti-6Al-4V Material in WT%

The notch-mounted COD gauge technique was used to measure the
crack opening displacement. The experiments were carried out under
constant AP defined by maximum and minimum load, Pmnax and Pgig
respectively, with the frequency of 15 Hz. A single overload P, was
applied at crack length of 18mm, 25mm and 29mm with frequency
of about 0.5 Hz. The interval crack length is large enough to avoid the

overload interaction. This was carried out for different Ppin. Ppac and

13




Por. In all these test. while a permanent increase in COD measurments
was registered tollowing the overload application, no closure could be
detected. This was attributed to the possible insensitivity of COD
gauge resulting from the long distance between the crack tip and the
position of the gauge at the mouth of the crack, which in all tests was
more than 20 mm. A new set of experiments was then executed. In
these a series of pairs of hardness indentations were made along two
lines parallel to and equal distance from the expected nominal crack
path(Fig. 2). Each pair measures 3mm apart. A strain extensometer,
with an accuracy of 5x107, was used with the tips of its head resting

in the pair of indentations whose connecting line was perpendicular

T rt g s sy

P I I S

CE N T T N ¥

Fig., 2 A series of pairs of hardness indentations
made along two lines parallel to and cqual
distance from the cxpected nominal crack

path




to the crack plane. The position of the extensometer followed behind
the advancing crack tip. Closure measurements were made in the
same pattern discribed above, but only at the distance of 3mm
behind the crack tip. A schematic of this surface measurement
procedure and an illustrative photograph are shown in Figure 3 and
Figure 4 respectively. Gutput from this experiment, in the form of
load versus displacement curves for different crack lengths a and
different P;lax/Pmax’is shown in Figures 5(a) and (b); the indication
being that, for this material, the onset of the closure depends on Pmin.
No closure was observed for Pmin > 1KN. Thus it was assumed that for
these Ti-6Al-4V specimens and load conditions with Pmin > 1KN, the
governing retardation mechanism is the crack tip constraining
compressive residual stress.

A number of models accounting for the effect of residual stress due
to overloading have been suggested. The modified Willenberg et
al{36] appeared to be the one most frequently referenced. According
to this model, the stress intensity for crack growth is modified by a
residual stress intensity factor Kx that decays lLinearly with crack

extension. This Kg 1s written as:

| - Kin/Kmax Aa,,
ko= [T ] [ a5 ko] o)
‘ Z,
K.y is the maximum stress intensity factor associated with totigue

crack growth threshold at R=0: Aua, is crack growth following the

overload and S s defined as a shut off ratio corresponding to that

15




’ indentations

’—— strain extensomeier

resolution 5x10%(-5)

specimen

N\

Fig. 3 Schematic sketch of closure measurement
(the position of the gauge leads A are maintained at 3mm

behind the crack tip B at the moment of applying overload)

Fig. 4 Photograph of the schematic sketch shown in Fig. 3
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ol
value of the ratio Kmax/Kmax, where crack arrest is expected to result;

Z, is the overload affected zone and equal to

Zol=%{(Ktonlax/0y % (11)

where yis an experiinental constant; For Ti-6Al-4V material yand S
are expected to be 4 and 2.8, respectively(43,44] while o, is 924
M/mm2. Additional work by Wei et al[42] suggests that further
modifications be made to the above equations. These modifications
preserve the basic concept that a residual stress intensity factor Kgr is

produced by the overload. The rate of decay is, however, assumed to

be proportional to (1 - Aa,/Z. )* over the range of Aaoi from Z, to Zo).

This is expressed as:

0 Aa *
Ke=Kg (1 - =2 Zy1 < 01 € Zo| (12)

*

Z,, indicates the delayed zone and is assumed to be equal to the
appropriate cyclic plastic zone size. Z, is the overload effected zone.
KR’ is the residual stress indensity factor immediately following the

overload, i.e. at Aaogl = 0; it is given as:

1-Kih/Kmg 0
K3= Sh{I e (Kmlax - Kmax) (13)
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In a deterministic sense, equation (12) could be used in conjuction
with a Paris type crack growth law to calculate the crack growth ratc
in the overload affective zone. One of these laws, which exibits a
strong dependency on R, is what developed by Walker[46] in the
form:

da

d_N= C I(ma)( AK

which could be further expressed as

da m+n n
dN=CKmax (I'R) (14)

where C and m are material constants.

The above equation is, in fact, identical to the equation derived by
Fitzgerald[47] on the basis of empirical data fitting. In his form
however, the value of AK is reduced by AKo which is defined as a
parameter indicating an apparent threshold value.

Now, by assuming that the compressive residual stress at the crack
tip due to the overloading is the main mechanism, equation (14)
could then be modified as

da

aﬁ = C K™ (1-R )" (15)
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I(min'l( . . .
where K ¢ = Kpax-Kr, Reg= T(_-I'(% , and substituting these into eq.(15)

we will get

da m srn
dN = C Km-Kr)™ AK (16)

There is no available information in the literature indicating the
validity of the above equation for overload conditions which do not
promote closure by crack tip plasticity. Therefore experimental tests
were carried out on specimens of Ti-6Al1-4V, having the compact
tension geometry previously described, to test equations (12) and
(16) in the overload affected region. These tests included varying
parameters of stress ratio, overload and AK as shown in table 2. In
each test crack length and the associated growth rate were measured
during base loading as well as during the delayed zone after the
overload application. Np was also measured and listed in table 2.
Some experimental results of this work, in the form of da/dN versus
crack length during retardation, are shown in Figures 6(a)-6(d).
Results using [12] and [16] for the same loading conditions are also
presented in these figures. It was observed, however that by

modifying Wei and Shih's form, i.e., equation [12], to

ol

K

1-Kin/Kmax 0l max
Kr = 717 (Kmax - K — 17
R S-1 ( max) K max ( )
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(Pol-Pmax)/Pmax
50% 70% 109%
(%)
Overload(KN) 16.5 18.7 23.0
AK Nd AK Nd AK Nd
-3 -3 _3
(N-mm’) (N-mm” (N-mm?)
Pmin=2.2KN 685.2) 532 | 581.5| 1763 |678.7 |12.,267
Pmax=11KN 875.0] 376 | 873.6 | 1502 |871.1 |10,940
R=0.20 1037.0] 135 1007.0 {8,549
Pmin=5KN 465.1 | 1,218 | 464.3| 2,810 | 463.5| 88,208
Pmax=11KN 596.1 898 | 594.8| 2,481 | 593.5] 48,615
R=0.46 748.5 563 | 686.0 | 2,264 | 686.5{ 38,267
Pmin=6.6KN 339.4 | 4,080 | 340.2 |45,120343.1
Pmax=11KN 440.6 | 1,094 | 439.7 |17,788]435.2 |18,388
R=0.6 559.1 | 936 | 501.8 |16,217|500.4 |13,332
Table 2 Effect of Varying R, overload ratio and AK on
CracK Growth Delay (Nd) in Ti-6Al-4V
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A closer fitting, as shown also in the above mentioned figures can be
achieved. This empirical modification emphasizes the influence of the
overload ratio. Several other observations obtained from this
experimental program will be discussed in the following chapter. The
major conclusion drawn from this work, however, is that the
effective stress intensity factor for the overload affected zone could
be determined. Once this has been achieved, the next step is to
generate experimentally the scatter crack growth curves. From these,
constant probability crack growth curves could be established and
compared with those theoretically obtained using the proposed

model. This will be detailed in the following section.

0.00010 A
N . “ e
% 0.00008 . a®
= | % 1L A
< ] : oo
o Ced [ ]
€ 0.00006 - P R
£ 4 ) . .
~ | Lt " + Experiment
0.00004 - . - ° ® By Authors
S 1 » + By Weiand Shih
= 1 o Load Condition:
5 0.00002 4 i Pmin=4KN
9 .t Pmax=9KN
1 Pol=18KN
0.00000 r T v T v .
17 18 19 20

Crack Length (mm)

Fig. 6-(a) KR model test
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Fig. 6-(c) KR model test
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Fig. 6-(d) KR model test

3.3 Single Overload Application

3.3.1 Experimental Crack Growth Curves
Crack growth scatter curves, including durations of delayed zones,
were sixty-five identical compact-tension

generated by wusing

specimens of Ti-6Al-4V material which are used throughout this
program. Each specimen supplied one sample crack growth curve
containing three overload regions at crack lengthes of 18, 25 and 29
mm. These intervals were seleted so that no one overload region
could interact with any other overload region on the same curve.
Basic load conditions were Ppgin = 4 KN and Pn,= 9 KN; overload Py,

was 18 KN. Load frequency was 15 Hz and the base loading as well as

25




the overloads was applied by using an automatic function generator
system linked to the servohydraulic material testing machine which
was run by the same operator in a temperature-controlled room
during the entire test program. Data was collected in the form of
number of cycles and corresponding crack length at intervals of
1,500 cycles with each data point representing an average of three
measurements taken with a frequency of 500,000 points per second.
Crack length was measured using a current reversing potential drop
system developed by the authors and decribed in Appendix D.
Typical results of crack length a vs number of cycles N are shown in
Figure 7. Each of these sixty-five sample curves, which are shown in
Figure 8, corresponding to initial and final crack lengths of 16 and
32mm, respectively, was divided into 160 segments; each
representing a crack state position with a width of 0.1 mm. Number
of cycles in each state was calculated as i;; where 1<r<160 and
1<j<65. This data was then utilized in a manner identical to that
described in references[11, 27] to generate experimental constant
probability  crack growth curves which include retardation zones.

The curves are shown in Figures 9(a) and 9(b).
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3.3.2 Theoretical Crack Growth Curves

The next step was to produce the corresponding theoretical curves
using the proposed model. This was achieved in the following
combined form by employing equations (7), (9) and (16) and

considering the threshold level
Ai = C (Kmax-Kr)™ (AK-AKg)~" (-InP)? (18)

By maintaining the value of P constant and calculating Kmnax, Kr and
AK for a crack length a; a=X Ax, one obtains the number of cycles AN
corresponding to increament Aa at a crack length a. This yields an
individual constant probability crack growth curve. The length Zg of
the overload affected zone was determined by using equation (11).
The full solution of equation (18) requires the knowledge of the
parameters ¢, m, n and B. As the objective of this part of the study
was to predict the overload delayed zone, use was made of the
portions of the experimental constant-probability curves
corresponding to the constant amplitude load cycles to estimate the

constants using minimum least square curve fitting method. If the

unit of stress intensity factor is N.mm-15 and Ax=0.Imm the results

are
C = 9.881x10!0
m = 0.93
n =203

and B = 046
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Those constants were used in equation (18) to generate the
theoreticai consiani probability crack growth curves for the delayed
regions. Eight of those are shown in Figure 10(a)-Figure 10(h) and
compared with constant probability curves from the experiment
(Figure 9(b)). Furthermore, delayed cycles obtained both
experimentally and theoretically are presented in table 3, in which
the degree of error between the two sets of results was listed. The
average error in data predicted by the proposed model is 8%.

Discussion of the results and observations concerning the

retardation process are the subject of the following chapter.
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pP=0.1

CL AN (THEORY) AN (EXPERIMENT) %

(MM) (CYCLES) (CYCLES) ERROR
16.9 3093 2625 17.83
17.0 3055 3425 -10.80
17.1 3019 3645 -17.69
17.2 2983 3322 -10.20
17.3 2947 2896 1.76
17.4 2913 3070 -5.11
17.5 2878 2897 ~0.66
17.6 2844 3211 -11.43
17.7 2810 3314 -15.21
17.8 2778 2897 -4.11
17.9 2745 2647 3.70
18.0 2713 3096 -12.37
19.6 103154 105209 ~-1.95
19.7 2524 2256 11.88
19.8 2470 2172 12.06
19.9 2445 2170 12.67
20.0 2241 1922 16.59
20.1 2131 1862 14.45
20.2 2108 1870 12.73
20.3 2084 1866 11.68
20.4 2061 1871 10.15
20.5 2038 1869 9.04
20.6 2015 1874 7.52
20.7 1993 1828 9.03
20.8 1971 1826 7.94
20.9 1949 1865 4.50
21.0 1927 1823 5.70
21.1 1906 1730 10.17
21.2 1885 1731 8.90
21.3 1865 1728 7.93
21.4 1843 1850 -0.38
21.5 1824 1847 -1.25
21.6 1803 1727 4.40
21.7 1784 1721 3.66
21.8 1764 1722 2.44
21.9 1745 1719 1.51

Table 3 Percentage error between the theoretical
and experimental constant-probability
crack growth curves
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retardation
zone

CL
(MM)

22.
22.
22.
22.
22.
22.
22.
22.
22.
22.
23.
23.
23.
23.
23.
23.
23.
23.
23.
23.
24.
24.
24,
24.
24,
24.
24.
24.
24.
24.
25.
26.
27.
27.
27.
27.
27.
27.
27.

AUV WP OYVWOYWOILTaUDBWNFRFOWOIOONUMIAEWNPRPROOVLVOIAAUD WNKHO

AN (THEORY)
(CYCLES)

1725
1707
1688
1670
1652
1633
1616
1599
1581
1563
1547
1530
1514
1497
1481
1465
1449
1434
1418
1403
1387
1373
1358
1343
1329
1315
1300
1287
1272
1259
1246
79515
1134
1035
981
971
961
950
940

Table

3

AN (EXPERIMENT)
(CYCLES)

1714
1726
1710
1717
1733
1712
1719
1621
1619
1517
1510
1532
1533
1517
1434
1422
1418
1425
1316
1319
1416
1396
1404
1304
1294
1286
1300
1283
1194
1305
1418

90133

(continued)
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1048
g97¢
952
956
956
974
963

%

ERROR

.64
.10
.29
.74
.67
.61
.99
.77
.35
.03
.45
.13
.24
.06
.28
.02
.19
.63
.75
.37
.05
.65
.28
.99
.70
.26
.00
.03
.53
.52
.13
.78
.21
.72
.05
.57
.52
.46
.39




CL AN (THEORY) AN (EXPERIMENT) %
(MM) (CYCLES) (CYCLES) ERROR
27.7 930 960 -3.13
27.8 920 950 -3.16
27.9 910 975 -6.67
28.0 900 970 -7.22
28.1 890 971 -8.34
28.2 881 967 -8.89
28.3 871 967 -9.93
28.4 861l 889 -3.14
<8.5 852 944 -9.74
28.6 843 976 -13.63
28.7 834 921 -9.45
28.8 824 938 -12.15
28.9 816 935 -12.72
reardation 29,0 807 896 -9.93
wne 31.1 70242 77076 -8.87
31.2 658 731 -9.13
31.3 624 732 -14.75
31.4 618 724 -14.64
31.5 610 725 -15.86
31.6 604 722 -16.34
31.7 597 702 -14.96
31.8 590 7CC -15.71
31.9 583 697 -16.35
32.0 576 696 -17.24
32.1 571 698 -18.19
32.2 563 680 -17.20
32.3 557 662 -15.86
32.4 551 660 -16.50
32.5 545 657 -11.70
32.6 538 657 -18.11
32.7 532 623 -14.61
32.8 526 610 -13.77
32.9 520 601 -13.48
33.0 513 598 -14.21

Table 3 (continued)
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P=0.2
CL AN (THEORY) AN (EXPERIMENT) %
(MM) (CYCLES) (CYCLES) ERROR
16.9 2623 2203 19.06
17.0 2591 2324 11.49
17.1 2561 2682 -4.51
17.2 2529 2432 3.99
17.3 2500 2331 7.25
17.4 2470 2623 -5.83
17.5 2441 2542 -3.97
17.6 2412 2428 -0.06
17.7 2384 2364 0.85
17.8 2356 2322 1.46
17.9 2328 2320 0.03

reardation_ 18 .0 2301 2329 -1.20

zone 19.6 90204 100892 -10.59
19.7 2480 2229 11.26
19.8 2265 2231 1.52
19.9 2073 2026 2.32
20.0 1901 2014 -5.61
20.1 1808 1927 -6.17
20.2 1787 1917 -6.78
20.3 1768 1822 -2.96
20.4 1748 1823 -4.11
20.5 1728 1827 -5.42
20.6 1709 1856 -7.92
20.7 1690 1813 -6.78
20.8 1672 1817 -7.98
20.9 1653 1768 -6.50
21.0 1634 1610 1.49
21.1 1617 1603 0.87
21.2 1598 1612 -0.87
21.3 1582 1611 -1.80
21.4 1563 1613 -3.10
21.5 1547 1598 -3.19
21.6 1529 1416 7.98
21.7 1513 1411 7.23
21.8 1496 1308 14.37
21.9 1480 1404 5.41
22.0 1463 1311 10.39
22.1 1448 1387 4.40
22.2 1432 1314 8.98

Table 3 {Continued)
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CL AN (THEORY) AN (EXPERIMENT) %

(MM) (CYCLES) (CYCLES) ERROR
22.3 1416 1402 1.00
22.4 1401 1326 5.66
22.5 1385 1394 -0.65
22.6 1371 1406 -2.49
22.7 1355 1400 -3.21
22.8 1341 1403 -4.42
22.9 1326 1404 -5.55
23.0 1312 1380 -4.93
23.1 1298 1315 -1.29
23.2 1283 1410 -9.01
23.3 1270 1356 -6.63
23.4 1256 1316 -4.56
23.5 1243 1298 -4.24
23.6 1229 1309 -6.11
23.7 1216 1305 -6.82
23.8 1202 1296 -7.25
23.9 1190 1290 -8.18
24.0 1177 1305 -9.81
24.1 1164 1284 -9.35
24.2 1152 1003 14.86
24.3 1139 988 15.28
24.4 1127 986 14.30
24.5 1115 983 13.43
24.6 1103 987 11.75
24.7 1091 963 13.29
24.8 1079 977 10.44
24.9 1068 985 8.43
reurdstion _ 25, 0 1056 1102 -4.17
2one 26.9 66908 76760 -12.83
27.0 961 971 -1.03
27.1 877 952 -7.88
27.2 833 943 -11.66
27.3 824 930 -11.40
27.4 814 901 -9.65
27.5 806 889 -9.34
27.6 798 841 -5.11
27.7 788 849 -7.18
27.8 780 839 -7.03
27.9 772 849 -9.06

Table 3 (continued)
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CL AN (THEORY) AN (EXPERIMENT) %

(MM) (CYCLES) (CYCLES) ERROR
28.0 763 862 -11.48
28.1 755 850 -11.17
28.2 747 825 " -9.45
28.3 739 858 -13.87
28.4 730 847 -13.81
28.5 723 804 -10.07
28.6 715 760 -5.92
28.7 707 770 -8.18
28.8 699 754 -7.29
28.9 692 767 -9.78
retardation 29, 0 684 824 -16.99
zone 31.1 55293 60602 -8.76
31.2 558 622 -10.28
31.3 530 607 -12.68
31.4 523 604 -13.41
31.5 518 615 -15.77
31.6 512 559 -8.41
31.7 506 598 -15.38
31.8 500 517 -3.28
31.9 495 556 -10.97
32.0 489 558 -12.36
32.1 484 499 -3.00
32.2 478 545 -12.29
32.3 472 418 -12.92
32.4 467 468 -0.02
32.5 462 519 -10.98
32.6 457 511 -10.56
32.7 451 459 1.77
32.8 446 405 10.12
32.9 441 402 9.70
33.0 435 416 4.57

Table 3 (continued)
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CL AN (THEORY) AN (EXPERIMENT) %
(MM) (CYCLES) (CYCLES) ERROR
16.9 2295 1879 22.14
17.0 2267 1879 20.65
17.1 2240 1894 18.27
17.2 2214 2321 -4.61
17.3 2187 1880 16.33
17.4 2161 1884 14.70
17.5 2136 2011 6.22
17.6 2111 1976 6.83
17.7 2086 1937 7.69
17.8 2061 1890 9.05
17.9 2037 1884 8.12
reurdnign__ls.o 2014 1947 3.44
zone 19.6 88950 96093 -7.43
19.7 2001 1844 8.51
19.8 1982 1833 8.12
19.9 1814 1814 0.00
20.0 1663 1759 -5.46
20.1 1582 1725 -8.29
20.2 1564 1719 -9.02
20.3 1547 1749 -11.55
20.4 1529 1415 8.06
20.5 1513 1416 6.85
20.6 1495 1424 4.99
20.7 1479 1304 13.42
20.8 1463 1409 3.83
20.9 1446 1311 10.30
21.0 1430 1426 0.28
21.1 1415 1307 8.26
21.2 1398 1310 6.72
21.3 1384 1312 5.49
21.4 1368 1310 4.43
21.5 1353 1300 4.31
21.6 1339 1394 -3.95
21.7 1323 1387 -4.61
21.8 1309 1396 -6.23
21.9 1295 1309 -1.07
22.0 1281 1303 -1.69
22.1 1267 1328 -4.59

Table 3 (Continued)
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CL AN (THEORY) AN (EXPERIMENT) %

(MM) (CYCLES) (CYCLES) ERROR
22.2 1252 1310 -4.42
22.3 1240 1318 -5.92
22.4 1225 1301 -5.84
22.5 1213 1303 -6.91
22.6 1199 1308 -8.33
22.7 1186 1259 -5.80
22.8 1173 1179 -0.51
22.9 1161 1097 5.83
23.0 1147 1005 14.13
23.1 1136 986 15.21
23.2 1123 1203 -6.65
23.3 1111 966 15.01
23.4 1099 1007 9.14
23.5 1087 1000 8.70
23.6 1076 999 7.71
23.7 1064 992 7.26
23.8 1052 973 8.12
23.9 1041 974 6.88
24.0 1030 1018 1.18
24.1 1019 980 3.98
24.2 1007 985 2.23
24.3 997 960 3.85
24.4 986 974 1.23
24.5 976 962 1.46
24.6 965 973 -0.82
24.7 955 957 -0.21
24.8 944 960 -1.67
24.9 934 972 -3.91
reardation 25,0 925 1075 -13.95
zone 26.9 55587 62279 -10.74
27.0 842 933 -9.75
27.1 767 846 -9.33
27.2 729 675 8.00
27.3 721 677 6.50
27.4 712 845 -15.74
27.5 706 802 -11.97
27.6 697 706 -1.27
27.7 690 741 -6.88

Table 3 (continued)
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CL AN (THEORY) AN (EXPERIMENT) %

(MM) (CYCLES) (CYCLES) ERROR
27.8 683 672 1.64
27.9 675 773 -12.68
28.0 668 749 -10.81
28.1 660 681 -3.08
28.2 654 684 ~4.39
28.3 646 671 =3.72
28.4 640 674 -5.04
28.5 632 634 ~0.31
28.6 625 637 ~1.88
28.7 619 685 -9.64
28.8 612 681 -10.13
28.9 605 632 ~4.27
reardaion  29.0 599 668 -10.32
one 31.1 44706 46274 -3.39
31.2 488 497 ~1.81
31.3 464 481 -3.53
31.4 458 500 -8.40
31.5 453 501 -9.58
31.6 448 421 6.41
31.7 443 451 -1.77
31.8 438 485 -9.69
31.9 432 419 3.10
32.0 428 417 2.64
32.1 423 463 -8.63
32.2 419 418 0.24
32.3 413 410 0.73
32.4 409 456 -10.30
32.5 404 407 -0.74
32.6 399 404 -1.24
32.7 395 409 -3.42
32.8 390 399 -2.25
32.9 386 396 -2.52
33.0 382 397 -3.78

Table 3 (continued)
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CL

(MM)

16.
17.
17.
.20
17.

17

17

17

zone —-19

20

20

20
20

21
21
21

22
22
22

90
00
10

30

.40
17.
17.
17.
.80
17.

reardstion 18 .

50
60
70

90
00

.60
19.
19.
19.

70
80
90

.00
20.

10

.20
20.
20.
.50
.60
20.
20.
20.
21.
21.
21.

30
40

70
80
90
00
10
20

.30
.40
.50
21.
21.
21.
21.

60
70
80
90

.00
.10
.20

AN (THEORY)
(CYCLE)

2023
2000
1976
1952
1930
1906
1884
1861
1840
1818
1796
1776
69614
1753
1748
1600
1467
1395
1379
1365
1348
1334
1319
1305
1290
1275
1262
1247
1234
1220
1207
1193
1181
1167
1155
1142
1129
1117
1105

Table 3

AN (EXPERIMENT)
(CYCLE)

1832
1835
1835
1888
1848
1828
1880
1836
1880
1849
1878
1880

76566

{continued)

50

1615
1619
1517
1309
1350
1311
1307
1344
1311
1413
1394
1313
1303
1414
1284
1137
1104
1195
1092
1119
1058
1043
1095
1072
1075
1068

.43
.99
.68
.39
.44
.27
.21
.36
.13
.68
.37
.53
.08
.54
.97
.47
.07
.33
.19
.44
.30
.75
.65
.38
.75
.15
.75
.88
.53
.51
.00
.25
.54
.30
.74
.29
.32
.91
.46




CL AN (THEORY) AN (EXPERIMENT) %

(MM) (CYCLE) (CYCLE) ERROR
22.30 1093 1108 -1.35
22.40 1081 989 9.30
22.50 1069 990 7.98
22.60 1058 1000 5.80
22.70 1046 973 7.50
22.80 1035 986 4.97
22.90 1023 972 5.25
23.00 1013 990 2.32
23.10 1001 979 2.25
23.20 991 999 -0.80
23.30 980 940 4.26
23.40 969 1002 -3.29
23.50 959 980 -2.14
23.60 948 972 -2.47
23.70 939 981 -4.28
23.80 928 867 7.04
23.90 918 982 -6.52
24.00 908 990 -8.28
24.10 899 876 2.63
24.20 888 907 -2.09
24.30 880 816 7.84
24.40 869 965 -9.95
24.50 861 796 8.17
24.60 851 958 -11.17
24.70 842 866 -2.77
24.80 833 872 -4.47
24.90 824 858 -3.96
rurdstion 25, 00 815 887 -8.12
e T 26.90 49499 52846 -6.33
27.00 743 708 4.94
27.10 676 605 11.74
27.20 643 647 -0.62
27.30 635 670 -5.22
27.40 629 608 3.45
27.50 622 669 -7.03
27.60 615 630 -2.38
27.70 609 671 -9.24
27.80 602 631 -4.60
27.90 596 631 -5.55

Table 3 (continued)
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CL AN (THEORY) AN (EXPERIMENT) %

(MM) (CYCLE) (CYCLE) ERROR
28.00 589 671 -12.22
28.10 582 547 6.40
28.20 577 604 -4.47
28.30 570 580 -1.72
28.40 563 532 5.83
28.50 558 581 -3.96
28.60 552 581 -4.99
28.70 545 554 -1.62
28.80 540 573 -5.76
28.90 534 576 -7.29
reardation 29,00 528 513 2.92
zone 31.10 42429 40755 4.11
31.20 ) 431 469 -8.10
31.30 409 418 -2.15
31.40 404 418 -3.35
31.50 399 402 -0.75
31.60 395 415 -4.82
31.70 391 416 -6.01
31.80 386 362 6.63
31.90 382 413 -7.51
32.00 377 412 -8.50
32.10 373 402 -7.21
32.20 369 410 -10.00
32.30 365 406 -10.10
32.40 360 390 -7.69
32.50 357 391 -8.70
32.60 352 350 0.57
32.70 348 334 4.19
32.80 344 316 8.86
32.90 340 313 8.63
33.00 337 311 8.36

Table 3 (continued)
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(MM)

16.
17,
.10
.20
.30
17,

17
17
17

17
17
17
17

19

19.
19.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
21.
21.

21

21

21
21

90
00

40

.50
.60
.70
.80

17,
reardation 18,
.60
.70

90
00

80
90
00
10
20
30
40
50
60
70
80
90
00
10

.20
21.
21.
21.

30
40
50

.60
21,

70

.80
.90
22,
22.

00
10

AN (THEORY)
(CYCLE)

1780
1759
1737
1718
1696
1677
1657
1637
1618
1599
1580
1562
63381
1683
1537
1408
1290
1227
1213
1200
1186
1173
1160
1148
1134
1122
1109
1098
1085
1073
1061
1050
1038
1027
1015
1005
993
983

Table 3

AN(EXPERIMENT)
(CYCLE)

1616
1622
1679
1644
1620
1633
1618
1537
1648
1537
1604
1431
71592
1503
1454
1310
1187
1122
1107
1101
1105
1101
1219
1188
1102
1108
1104
1082
1079
1079
1063
1095
975
998
972
993
879
874

(continued)
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ERROR
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.15
.45
.45
.50
.69
.69
.41
.51
.82
.03
.50
.15
.47
.98
.71
.48
.68
.36
.58
.99
.33
.54
.84
.37
.90
.26
.45
.48
.56
.56
.19
.11
.46
.91
.42
.21
.97
.47




CL

(MM)

22.
22.
22.
.50
22.
22.
22.
22.
23.
23.
23.
23.
23.
23.
23.
23.
23.
23.
.00
24.
24.
24,
24.
.50
24.
24.
24.
.90
.00
Fone 26.
.00
27.
27.
27.
27.
27.
27.
.70

22

24

24

24

rewardation 25

27

27

20
30
40

60
70
80
90
00
10
20
30
40
50
60
70
80
90

10
20
30
40

60
70
80

90

10
20
30
40
50
60

AN (THEORY)
(CYCLE)

971
962
950
941
930
920
910
800
891
881
871
862
852
844
834
825
816
808
799
790
782
773
765
757
748
741
732
725
717
43217
653
595
565
559
553
548
541
535

Table 3
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AN (EXPERIMENT)
(CYCLE)

888
983
966
877
975
917
963
880
958
919
966
911
885
881
821
872
824
795
775
714
687
739
776
696
688
677
689
669
658
46671
632
631
631
630
629
631
628
583

(continued)

ERROR

9.35
-2.14
-1.66

7.30
-4.62

0.33
-5.50

2.27
-6.99
-4.13
-9.83
-5.38
-3.73
-4.20

1.58
-5.39
-0.97

1.64

3.10
10.64
13.83

4.60
-1.42

8.76
8.72
9.45
6.24
8.37
8.97
7.40
3.32

-5.71
-10.46
-11.27
-12.08
-13.15
-13.85

-8.23




CL AN (THEORY) AN (EXPERIMENT) %

(MM) (CYCLE) (CYCLE) ERROR
27.80 529 528 0.19
27.90 524 527 -0.57
28.00 518 531 -2.45
28.10 513 528 -2.84
28.20 506 531 -4.71
28.30 502 569 -11.78
28.40 496 428 15.89
28.50 490 435 12.64
28.60 486 468 3.85
28.70 479 441 8.62
28.80 475 466 1.93
28.90 470 456 3.07
::f“@L_29.00 464 468 -0.85
31.10 34678 32033 8.26
31.20 379 412 -8.01
31.30 359 415 -13.49
31.40 356 414 -14.01
31.50 351 407 -13.76
31.60 347 413 -15.98
31.70 344 414 -16.91
31.80 340 353 -3.68
31.90 335 409 -18.09
32.00 332 408 -18.63
32.10 328 402 -18.41
32.20 325 394 -17.51
32.30 321 298 7.72
32.40 317 305 3.93
32.50 313 297 5.39
32.60 310 293 5.80

Table 3 (continued)
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CL AN (THEORY) AN (EXPERIMENT) %
(MM) (CYCLE) (CYCLE) ERROR
16.90 1547 1394 10.98
17.00 1528 1393 9.69
17.10 1510 1290 17.05
17.20 1492 1205 23.82
17.30 1475 1202 22.71
17.40 1457 1248 16.75
17.50 1440 1415 1.77
17.60 1422 1317 7.97
17.70 1406 1321 6.43
17.80 1390 1340 3.73
17.90 1373 1410 -2.62
rerdation 18, 00 1357 1325 2.42
zone 19.60 57403 64368 -10.82
19.70 1462 1280 14.22
19.80 1336 1310 1.98
19.90 1223 1292 -5.34
20.00 1121 1196 -6.27
20.10 1067 996 7.13
20.20 1054 970 8.66
20.30 1043 979 6.54
20.40 1030 1003 2.69
20.50 1020 976 4.51
20.60 1008 1002 0.60
20.70 997 987 1.01
20.80 986 975 1.13
20.90 975 873 11.68
21.00 964 981 -1.73
21.10 953 893 6.72
21.20 943 879 7.28
21.30 933 867 7.61
21.40 922 894 3.13
21.50 913 883 3.40
21.60 992 879 2.62
21.70 892 967 ~7.76
21.80 882 867 1.73
21.90 873 881 -0.91
22.00 864 819 5.49
22.10 853 822 3.77
22.20 845 791 6.42

Table 3 (continued)
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CL

(MM)

22.
22.

22

22

23

24

retardation 25

26

27
27

27

30
40

.50
22.
22.
22.

60
70
80

.90
23.
23.
23.
23.
23.
23.
23.
23.
.80
Z3.
24.
24.
24.
24,
24.

00
10
20
30
40
50
60
70

90
00
10
20
30
40

.50
24.
24.
24.
24.
.00
.90
27.

60
70
80
80

00

.10
.20
27.
27.

30
40

.50
27.
27.
27.

60
70
80

AN (THEORY)
(CYCLE)

835
826
818
808
800
790
783
774
765
757
749
741
733
725
717
709
702
694
687
679
672
665
658
650
644
636
630
623
37575
568
517
491
486
481
475
470
465
460

Table 3
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AN (EXPERIMENT)
(CYCLE)

875
826
784
859
740
783
784
766
703
691
739
695
644
641
618
641
639
676
639
642
636
639
637
640
638
633
673
583
40279
528
527
529
506
485
440
445
428
426

(continued)

ERROR

.57
.00
.34
.94
.11
.89
.13
.04
.82
.55
.35
.62
.82
.10
.02
.61
.86
.66
.51
.76
.66
.97
.30
.56
.94
.47
.39
.86
-6.71

7.58
-1.90
-7.18
-3.95
-0.82

7.Q5
5.62
8.64
7.98
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CL AN (THEORY) AN (EXPERIMENT)

(MM) (CYCLE) (CYCLE)
27.90 456 425
28.00 450 429
28.10 445 426
28.20 441 427
28.30 435 430
28.40 431 425
28.50 427 428
28.60 421 412
28.70 417 426
28.80 413 433
28.90 408 411

retardation _ 29, 00 403 402

sone 31.10 32136 30647
31.20 329 320
31.30 312 312
31.40 309 313
31.50 306 318
31.60 302 309
31.70 298 309
31.80 295 316
31.90 292 305
32.00 288 271
32.10 286 303
32.20 282 298
32.30 278 295
32.40 276 296
32.50 272 294

Table 3 (continued)
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CL

(MM)

l6.
.00
.10
17.
.30
17.
.50
.60
17.
17.
17.
retardation_ 18 .
19.
19.
.80
.90
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
21.
21.
.20
21.
21.
.50
.60
21.
21.
21.
22.
22.

17
17

17

17
17

19
19

21

21
21

22

90

20

40

70
80
90
00
60
70

00
10
20
30
40
50
60
70
80
90
00
10

30
40

70
80
90
00
10

.20

AN (THEORY)
(CYCLE)

1312
1295
1280
1265
1250
1235
1221
1206
1192
1178
1164
1150

48744

1240
1132
1037
950
904
894
884
874
864
855
845
835
827
817
808
800
790
782
773
765
756
749
739
732
724
716

Table 3

AN (EXPERIMENT)
(CYCLE)

1154
1084
1120
1190
1085
1198
1103
1118
1211
1113
1120
1207

50186

1184
1103
1080
8973
977
881
883
884
825
877
846
790
819
870
821
820
820
804
748
762
769
739
769
741
741
698

(continue)

ERROR

.69
.46
.29
.30
.21
.09
.70
.87
.57
.84
.93
.72
.87
.73
.63
.98
.36
.47
.48
.11
.13
.73
.51
.12
.70
.98
.08
.58
.44
.66
.74
.34
.39
.68
.35
.90
.21
.29
.58




CL AN (THEORY) AN (EXPERIMENT) %

(MM) (CYCLE) (CYCLE) ERROR
22.30 708 618 14.56
22.40 700 640 9.38
22.50 693 644 7.61
22.60 685 685 0.00
22.70 678 636 6.60
22.80 671 613 9.46
22.90 663 639 3.76
23.00 656 614 6.84
23.10 649 636 2.04
23.20 641 642 -0.16
23.30 635 637 -0.31
23.40 628 614 2.28
23.50 622 639 -2.66
23.60 614 635 -3.31
23.70 608 639 -4.85
23.80 601 637 -5.65
23.90 595 635 -6.30
24.00 589 637 -7.54
24.10 582 635 -8.35
24.20 576 636 -9.43
24.30 569 582 -2.23
24.40 564 584 -3.42
24.50 557 584 -4.62
24.60 552 585 -5.64
24.70 545 575 -5.22
24.80 540 570 -5.26
24.90 534 573 -6.81
reurdation 2500 528 578 -8.65
zone 26.90 32479 37184 -12.65
27.00 481 425 13.18
27.10 438 423 3.55
27.20 417 427 -2.34
27.30 412 425 -3.06
27.40 407 420 -3.10
27.50 403 426 -5.40
27.60 398 423 -5.91
27.70 395 424 -6.84
27.80 330 423 -7.80

Table 3 (continue)
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CL

({MM)

27.
28.
28.
28.
28.
28.
28.
28.
28.
28.
28.
.00
zone 31.
30.
30.
30.
30.
31.
31.
31.
31.
31.

retardation 29

31
31

32

90
00
10
20
30
40
50
60
70
80
90

10
60
70
80
90
00
10
20
30
40

.50
.60
31.
31.
31.
32.
32.

70
80
90
00
10

.20
32.

30

AN (THEORY)
(CYCLE)

386
381
378
373
370
365
361
358
353
350
346
342
24646
515
461
414
373
338
306
279
265
262
259
256
253
250
247
245
241
239
237

Table 3

AN (EXPERIMENT)
(CYCLE)

424
421
424
426
424
420
423
401
389
367
396
387

20704
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518
479
413
397
348
312
315
304
304
315
274
276
311
280
266
266
266
261

.96
.50
.85
.44
.74
.10
.66
.72
.25
.63
.63
.63
.04
.58
.76
.24
.05
.87
.92
.43
.83
.82
.78
.57
.33
.61
.79
.89
.40
.15
.20




CL AN (THEORY) AN (EXPERIMENT) %
(MM) (CYCLE) (CYCLE) ERROR
16.90 1057 941 12.33
17.00 1044 943 10.71
17.10 1031 942 9.45
17.20 1020 1004 1.59
17.30 1007 986 2.13
17.40 996 966 3.11
17.50 983 926 6.16
17.60 972 928 4.74
17.70 961 893 7.61
17.80 949 883 7.47
17.90 938 925 1.41
reardation  18.00 928 . 987 : -5.98
zone 19.60 39254 48723 -19.43
19.70 999 893 11.87
19.80 913 807 13.14
19.90 835 818 2.08
20.00 766 802 ~4.49
20.10 729 822 -11.31
20.20 720 792 -9.09
20.30 712 743 -4.17
20.40 705 787 -10.42
20.50 696 741 -6.07
20.60 689 676 1.92
20.70 681 640 6.41
20.80 674 642 4.98
20.90 666 640 4.06
21.00 658 674 -2.37
21.10 652 642 1.56
21.20 644 643 0.16
21.30 637 641 -0.62
21.40 630 641 -1.72
21.50 623 640 -2.66
21.60 617 639 -3.44
21.70 609 617 -1.30
21.80 603 633 -4.74
21.90 597 622 -4.02
22.00 589 637 -7.54
22.10 584 636 -8.18

Table 3 (continued)
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retardation
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CL

(MM)

22.
22.
22,
22.
22,
22.
22,
22,
23.
23.
23.
23.

-

23.
23.
23.
23.
23.

24

24

24
24
24

27

27

27

20
30
40
50
60
70
80
90
00
10
20
30
20
50
60
70
80
90

.00
24.

10

.20
24.
24.
24,
24,

30
40
50
60

.70
.80
.90
25.
26.

00
90

.00
27.
27.
27.

10
20
30

.40
27.
27.

50
60

.70

AN (THEORY)
(CYCLE)

577
570
565
558
552
547
540
534
529
523
517
512
506
501
495
490
485
479
474
470
464
459
454
449
445
439
435
430
426
27758
388
353
336
332
328
325
321
318

AN (EXPERIMENT) %
(CYCLE) ERROR
639 -9.70
668 -14.67
636 -11.16
636 -12.26
597 -7.54
535 2.24
537 0.56
537 -0.56
537 -1.49
531 -1.51
536 -3.54
532 : -3.76
535 -5.42
534 -6.18
533 -7.13
537 -8.75
533 -9.01
533 -10.13
533 -11.07
531 -11.49
532 -12.78
529 -13.23
532 -14.66
530 -15.28
482 -7.68
481 -8.73
467 -6.85
412 4.37
430 -0.93
31478 -11.82
349 11.17
375 -5.87
374 -10.16
309 7.44
306 7.19
321 1.25
306 4.90
319 -0.31

Table 3 (continued)
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CL AN (THEORY) AN (EXPERIMENT) %

(MM) (CYCLE) (CYCLE) ERROR
27.80 314 308 1.95
27.90 311 306 1.63
28.00 308 337 -8.61
28.10 304 306 -0.65
28.20 301 305 -1.31
28.30 298 320 -6.88
28.40 294 306 -3.92
28.50 291 304 -4.28
28.60 288 288 0.00
28.70 285 302 -5.63
28.80 282 307 -8.14
28.90 279 . 331 . -15.71
rerdstion 29,00 275 332 -17.17
zone 31.10 21589 17284 24.91
31.20 225 272 -17.28
31.30 213 271 -21.40
31.40 211 250 -15.60
31.50 209 225 -7.11
31.60 206 228 -9.65
31.70 204 208 -1.92
31.80 202 206 -1.94
31.90 199 205 -2.93
32.00 197 203 -2.96

Table 3 (continued)
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CL

(MM)

17.
17.
17.
17.
17.
.00
Zone 19.
19.
19.
19.
20.
20.
20.
20.
20.
20.
.60
20.
20.
20.
21.
21.
21.
21.
21.

reardation 18

20

21

22
22

22

50
60
70
80
90

60
70
80
90
00
10
20
30
40
50

70
80
90
00
10
20
30
40

.50
21.
21.
21.
21.
22.

60
70
80
90
00

.10
.20
22.
22.

30
40

.50
22.
22.
22.

60
70
80

AN (THEORY)
(CYCLE)

696
688
681
672
664
057
25363
707
646
592
542
516
510
505
498
493
488
482
477
472
466 -
462
456
451
446
441
437
431
427
423
417
413
409
404
400
395
391
387
382

Table 3
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AN (EXPERIMENT)
(CYCLE)

592
607
643
682
643
617
24362
644
606
638
640
564
541
537
541
539
518
538
535
533
518
534
504
487
454
435
434
435
411
439
431
411
433
432
433
433
432
431
394

(continued)

ERROR

17.57
13.34

5.91
-1.47

3.27
6.48
4.11
9.78

6.60
-7.21

-8.51
-5.73
-5.96
-7.95
~-8.53
-5.79
-10.41
-10.84
-11.44
-10.04
-13.48
-9.52
-7.39
-1.76
1.38
0.69
-0.92
3.89
-3.64
-3.25
0.49
-5.54
-6.48
-7.62
-8.78
-9.49
-10.21
-3.05




CL

(MM)

retardation

wone

22.
23.
23.
23.
23.
23.
23.
23.
23.
.80
.90
24.
24.
24.
.30
.40
.50
24.
24.
24.
24.
25.
26.
26.
26.
.80
26.

23
23

24
24
24

26

27

27
27
27

27

80
00
10
20
30
40
50
60
70

00
10
20

60
70
80
90
00
90
60
70

90

.00
27.
27.
27.

10
20
30

.40
.50
.60
27.

70

.80
27.
28.

90
00

AN (THEORY)
(CYCLE)

379
374
370
367
362
358
355
351
347
343
339
336
332
329
325
321
319
314
312
308
304
302
19422
410
368
333
302
274
251
237
235
233
230
227
225
223
220
218

Table3

AN (EXPERIMENT)
(CYCLE)

360
375
355
535
410
329
408
351
332
337
310
329
310
329
308
309
303
327
308
308
330
332
22168
405
404
306
304
304
284
284
273
273
274
273
274
273
272
273

(continued)
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ERROR

.28
.27
.23
.40
.71
.81
.99
.00
.52
.78
.35
.13
.10
.00
.52
.88
.28
.98
.30
.00
.88
.04
.39
.23
.91
.82
.66
.87
.62
.55
.92
.65
.06
.85
.88
.32
.12
.15




retardation

wone

—t——

CL

(MM)

28.

28

10

.20
28.
28.
28.
28.
28.
28.
28.
29.
31.
30.
30.
30.
30.
31.
31.
31.
31.
31.
31.
31.
31.
31.
31.

30
40
50
60
70
80
90
00
10
60
70
80
90
00
10
20
30
40
50
60
70
80
90

AN (THEORY)
(CYCLE)

215
213
211
208
207
204
201
200
197
196
14578
294
263
236
213
193
175
159
151
149
148
146
145
142
142

Table 3

67

AN (EXPERIMENT)
(CYCLE)

272
272
273
272
271
273
271
273
273
272
11642
298
299
278
278
237
227
217
196
196
196
196
195
193
194

(continued)

ERROR

~-20.
-21.
.71
-23.
-23.
.27

=22

-25

-25.
-26.
=-27.
=-27.

25.
.34
-12.
-15.
-23.
-18.
.91
-26.
-22.
-23.
-24.
-25.
-25.
-26.
-26.

=22

96
69

53
62

83
74
84
94
22

G4
11
38
57

73
96
98
49
51
64
42
80




CHAPTER IV

CONCLUSIONS

1. The goal of this research program was to develop a crack growth
model which takes into account the random nature of the crack
evolution in real solids. This was achieved by viewing the growth
process as a Markovian stochastic process, discrete in state and
inhomogenous with respect to time. This led to the derivation of a
law that predicts the crack jump from oné state to the following state
with a specified probability, i.e. yielding constant probability crack
growth curves. In the model, the transition intensity of the process is
identified as a function of the effective stress intensity factor. This
permits the consideration of the load interaction history and makes
the model a valuable design and reliablity tool for constant, as well
as, random load applications. A fundamental concept of the model is
the assumption that the crack growth curve produced by an
appropriate continuum law is identical to the median probability
curve which corresponds to the value of P.(i)=0.56; this was
sufficient to identify the remaining constant probabilitty crack
growth curves.

2. An in-house experimental program was executed to generate
constant probability crack growth curves for three different loading
conditions by using 180 Al 7075-T6 center-notched flat specimen. A
comparison was then made between these curves and those
theoretically obtained for each corresponding test condition; full

analysis of this application is provided in Appendices A-C.
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3. An in-house experimental program was carried out to generate
constant probability crack growth curves for conditions of overload
application. In these tests sixty-five Ti-6A1-4V compact tension
specimens were used under the same base loading and for the same
overload ratio applied to three different crack lengths. The
corresponding theoretical constant probability crack growth curves
were calculated using the proposed model. A critical step in these
calculations was the determination of the effective stress intensity
factor during retardation. This was accomplished by separating the
retardation mechanisms and setting up experimental load conditions
so that the only governing mechanism was the crack tip compressive
residual stress. Comparision between experimental and theoretical
crack growth curves indicated prediction error of average 8%.
Several remarks concerning the experimental observations are
called for here:
A- Following an overload, two separate zones can be distinguished in
front of the crack tip as shown in Fig. 11. The first is a ductile
rupture zone and coincides with the sudden peak in the crack growth
rate. The width of this zone increases as the crack length, at which
the overload is applied, increases; see figure 12. The second region is
the retardation zone; it was observed that for the same stress ratio,
R, and the same overload ratio, the number of cycles, Nd, spent in
this region decreases as the crack length increases. This is contrary to
observations made by Arone[37]. Also results of the current
experiments seem to validate the conclusions drawn by Lankford

and Davidson{45] that Nd decreases as R increases.
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B- In several tests an apparent temporary crack tip arrest was
observed in the retardation zone. In each case the crack succeeded in
crossing this zone and regaining an accelerated growth equal to that
existing prior to the overload. Further investigation of these arrrest
regions showed, in all test specimens, traces of crack growth
striations indicating that growth existed in duration of apparent
ariest. The failure to detect this behavior could be due to the
inability to measure the associated very small crack growth using the
potential drop measurement system. Examples of these types of
striations, before overload application as well as in ‘the region of
apparent arrest, are shown in figure 13.

C- The test specimens, all of which were made of Ti-6Al-4V, a highly
textured material, responded to the application of the overload by
instantaneous crack tip extension via ductile rupture on a plane
inclined to the normal-to-load plane, see figure 14. The length of the
defected crack component and its angle, b and q, respectively, in
Figure 15 were found to depend on the crack length at which the
defection occurs; as the crack length increases, b increases while @
decreases. Due to the orientation of the deflected component, the
governing stress intensity factor at its tip is viewed as a combination
of Krand Kj As the loading cycle returns to its base form, the value
of Ki1 decays gradually as the deflected crack tip orients itselt back
towards the original fracture plane, see Figure 15. The length of the
deflected crack and its transition coincides with the combined length
of the overload rupture and delayed zones. It must however, be

noted that this crack deflection phenomenon 1s limited to the surface
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layer, i.e. the plain stress condition with a depth of less than 500 pm
as illustrated in Figure 16.

Finally, while the work in this program encourages the validity of
the proposed model's ability to predict scatter in the crack growth
behavior, it also emphasizes a specific shortcoming:

On the basis of the extensive experimental work carried out during
this program, it has been observed that crack growth scatter could be
divided into two stages; the first corresponding to short crack lengths
and the second corresponding to long cracks. Short lengths promote
the highest scatter reflecting the fact that at this length the
microstructural parameters, such as grain size and slip system
dominate. As the crack length increases scatter tends to decrease, an
indication that the growth process becomes a stress controlled
phenomenon. The use of stochastic models should therefore, be
directed primarily towards short crack applications. In this respect
the proposed model should be further developed to include, in an

explicit form, parameters that indentify the role of microstructure.
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PROBABILISTIC DESCRIPTION OF FATIGUE CRACK
GROWTH IN POLYCRYSTALLINE SOLIDS

H. GHONEM and S. DORE
Mechanics of Solids Laboratory, Department of Mechanical Engineering and Applied
Mechanics. University of Rhode Island. Kingston, RI 02881, U.S.A.

Abstract—A stochastic model describing the crack evolution and scatter associated with the
crack propagation process has been built on the basis of the discontinuous Markovian process.
The evolution and scatter are identified in terms of constant probability curves whose equation
is derived as In P.(i) = B(e* — ¢X'). i = I, where i is the number of cycles. B and K are
crack-length-dependent variables. P.(i) is the probabiliity of the crack being at position r along
the fracture surface after i cycles elapse and /, is the minimum number of cycles required for
the crack to advance from one position on the fracture surface 1o the next. The validity of the
model is established by comparing the crack growth curves generated for Al 2024-T3 at a4 specific
loading condition with those experimentally obtained.

INTRODUCTION

L.ABORATORY TESTS conducted on different polycrystalline materials exhibited considerable var-
iation in the crack growth characteristics data. This variation. or scatter, is considered a major
factor in the gap that exists between theoretical predictions of existing continuum crack prop-
agation models and experimental observations.

Several studies. emploving theory of probability concepts. have been developed to predict
and characterize the variation in crack propagation data. These studics generally follow two
approaches. The first approach is based on the introduction of random variables encompassing
the scatter sources to replace the deterministic parameters in continuum crack propagation
rules such as the Paris—Erdogan Equation [1] which is widely studied and used. The result of
this operation is viewed as a sample crack growth equation by which mean crack position and
associated variance can be calculated. Examples of models belonging to this approach are those
of Hoeppner and Krupp [2]. Gurney [3]. Ostergaard and Hiillberry [4] and others [5-7].

The second approach is based on the assumption that the crack propagation process could
be formulated in terms of a particular discontinuous Markovian process. This leads to the
description of the crack length in the form of its probability distribution whose evolution in
time characterizes the nondeterministic nature of the crack propagation process. Examples of
these models are found in the work of Ghonem and Provan [8) and Bogdanoff and Kozin [9].

This paper is an attempt to extend the concepts presented in Ref. [&] to produce a theoretical
method which will estimate the crack growth scatter at any stress level. This is achieved by
developing the sample functions of the crack growth process in terms of a constant-probability
crack growth criterion. Mathematical elements of this criterion are detailed in the first part of
thts paper while the second part deals with the use of the model in a numerical example to
estimate crack growth scatter in Aluminum 2024-T3. Emphasis is placed on the adherence of
the model to the physical aspects of the cruck growth process and the degree of agreement
between the theoretical results of the model and corresponding experimental data,

MATHEMATICAL ELEMENTS OF THE MODEL

The stochastic model of the fatigue crack propagation as brietly described in [8] 18 developed
in terms of 4 general pure birth, discontinuous Markovian stochastic process. The model s
based on the assumption that the crack front can be approximated. as shown in Fig. 1. by a
large number ot elements aa = 1., . . M. cach of which. in terms of the theory of probabihity,
identifies a statistical trial or experiment. The fracture state of the ath trial at evele s given
by the crack length or the random vianable "o, whose evolution with time shall then be estab-
fished. “a, wilt hereafter be reterred to as «,.
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Fig. 1. Schematic of Mode | crack propagation fracture surface.

Due to the built-in limitations of all experimental techniques the observed value of a; can
only be specified within the range of

x<d;, <x ~ Ax, ()

where Ax is the experimental error and v is the crack position calculated 2s (see Fig. 2)
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X = ridx; ro <r<ry. 2)

Here r identifies the observable zone or state along the fracture surface: ry is the initial prop-
agation state. r, is the state just prior to catastrophic failure of the specimen and r(, r»
rv - are the intermediate zones.

Given that the crack is in state r. then after / cycles have elapsed from the instant of reaching
r. one of two events would occur: «; would remain in state r (event “E;) or a; would not be in
state r (event ‘E;). The following observations can now be made:

1. Due to the fact that the propagation process is an irreversible one. the crack, if it does
not stay in r. must exist in a state greater than r.

2. Since it is not possible for the crack to propagate from one state to any other state without
penetrating the immediate neighboring state. each crack could then be identified by the number
of cycles required to advance from a given state to the following one.

Based on these observations the two events "E; and *E; can be seen as the element of a
measurable sample space (). see Ref. [9]. and the following definition of the probability measure
of «; becomes possible. At any fatigue cycle i the probability that «, is in state r, i.e. the
probability of "E,. is defined as

Plae'E} = P{x < a, < x + Ax},

PUE) = P, (3)
Therefore the probability of «, not falling within r is
PCE) = P =1~ P (4

Here P.,ti) continuously increases as the number of cycles increase.

Furthermore. it is known that the existence of the crack front at a particular position inside
the material depends on its present mechanical and microstructure details and is not directly
influenced by the details of any of its other previous positions. More specifically. the probability
of a, propagating from state r to r + | in the cvcle interval (i, i + A{) depends on the event
"E, and is independent of any event YE,. . . . . PE, occurring prior to i: 0 < j < i. This can be
expressed as

PUESJE... .. YE. L PEst = P{'ELTE} = P,D) (5)

wherer = r ~ 1 and """ denotes a conditional probability measure. These characteristics together
with the evolution of ¢, within the two-event space €. describe a discontinuous Markovian
process. The function P, (i) could then be considered the transition probability linking the
probability measures of two consecutive states » and r: ¢+ = r ~ 1. along the fracture surface.
It is now possible to describe the propagation process of the crack front in terms of the
following criteriu:
1. The probuability of «, propagating to a state different than » in AJ cyceles is given by

P.LAnD

il

P{EsE} ~ 0CAD

XA~ 00A0), (6)

it

where A, 1y a positive parameter deseribing the crack transition rate trom state r to ¢ in 3¢
cyveles and is thus considered a material- and time-dependent variable: see Bharucha-Reid {111
2. The corresponding probability that «, will be in state r during the ¢yvcle interval A7 s
Pioxo= PUESTEL - 0CAD

=l AdO - e (e
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3. The probability that q, is in a state different from r + | is

P,,(Al) = P{IE.\I’/’E!}
= 0(Ai): t>r + 1. (8)
Since
P{E;. si} = P{EL/'E}} - P{"E}}, 9)

therefore substituting eqns (6). (7) and (8) in eqn (9), the probability of the event "E,, can be
obtained as

P.(i + A = - NADP(D) + G(AD). (1)

By transposing and taking the limit A/ — 0, eqn (10) becomes

P.(i
2D _ _\ paiy. ()
di
The solution of this equation is ’
In Pi) = — fx, di + L, (12)

where L, is a constant.
An important element in solving this equation is the parameter A, which is seen here as a
measure of the crack growth rate. This measure is assumed to have the following properties:
1. In the presence of continuous cyclic loading the longer the cycle duration during which
the crack is in a specific state. the higher the probability that the propagation threshold of the
crack tip is satisfied and the higher the probability that the crack will advance. This indicates
that in a general case. ), increases monotonically with an increase in the number of cycles i.

2. A, being a matenial-dependent variable should then possess a nonzero positive value at
cyclei = 0.

Based on these observations A, is chosen to have the form
N, = Laieh, (13)

where L. and K are crack-position independent and time dependent parameters. Substituting
{13) in (12) one obtains

In P.(i) = —BeN + L,, (14)

where

®
I
>‘|’Jh

Upper and lower limits of P,(/) in the above equation are
1= P =0,

The form of eqn (14) suggests that ¢ has a lower boundary which satisfies the upper limit of
P.t). This means that egn (1) will be valid only for i = [,. where [, is the fower boundary of
i or simply the minimum number of cycles required for the crack to advance trom state r. In
this approach. concepts such as those of the weakest-link theory by Weibull {12] and others

:-—
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[13. 14] have not been taken into consideration. Hence. the upper limit condition for P.(/) can
be expressed as
Py = 1; i< ly.
By invoking this upper limit condition on eqn (14) the constant L, is obtained as

Ly = BekX» (15)

Equation (14) could then be written in the form

Blehlv — oAy,

P.th
P.1)

¢
I: i<[().

izl (16)

This result. illustrated in Fig. 3. describes a set of curves which can be obtained by varying
P.t). Each of these curves is a constant probability curve identifying the discrete crack position
and the corresponding number of ¢ycles. Since the variables B. K and /, are functions of the
crack length. they are related to the crack length through certain constants. These constants
can be determined by using one known constant probability crack growth curve and eqn (16)
consequently becomes fully defined. The significance of this concept is that if the crack growth
curve obtained by using a continuum model is considered as being the mean growth curve, i.e.
the Py == 0.5 curve. a view that is consistent with the application of the majority of the
continuum models. the parameters B. K and /, can then be calculated and eqn (16) becomes
sufficient te identify the crack length and associated scatter in number of cvcles at any stress
level without the need to perform scatter experiments. in the nexi part of the paper this model
will be employed in a numerical example to estimate the crack growth curves of Aluminum
2024-T3 and results will be compared to available experimental data.

Fie 3 Schematic of constant-probabibty crack growth curves as generated by egn e

e ——
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APPLICATION

The first step to be dealt with here is the determination of the unknown variables B. K and
Iy in eqn (16). To achieve this the authors utilized experimental crack growth scatter data
obtained by Virkler. Hillberry and Goel [15] and Yang, Donath and Salivar {16).

The first set of data [15] is obtained from 68 identically prepared Aluminum 2024-T3 tension
specimens with a central slot perpendicular to the loading axis. The data consists of the number
of cycles necessary to reach the same specified crack length for each specimen: 164 crack
lengths are recorded ranging from 9 mm to 49.8 mm for a half crack length. The 68 sample
crack growth curves are shown in Fig. 4. These curves were utilized to obtain constant prob-
ability crack growth curves as follows: The total crack length was divided into 204 states: each
with a width of 0.2 mm. The number of cycles spent in each state was calculated and arranged
in ascending order; the largest number was assigned a probability of

P = | — (x/68): x = 68,
and so on. up to a probahility of
P.() = 1 — (/68): x =1

for the shortest number of cycles. Points with equal probability were connected and a set of
ten constant probability curves was generated as shown in Fig. 5. Data points representing the
number of cycles corresponding to similar discrete crack positions along three different constant
probability growth curves. P.{i) = 0.05. 0.50 and 0.95. were used as input for eqn (16) to de-
termine the variables B, K and I,. The values obtained are listed in Table 1. These values are
plotted versus the crack length position. i.e. state r in Figs. 6(a. b. ¢): and by using regression
analysis the following relationships were constructed:

B = 0.018"
K = 2.498 x 1077 %%, (17
I() = 094 X 107“', _ “414()I — ’.—I.()I]‘

To confirm these relationships. another set of crack growth scatter data of IN 100. a superalloy

601 14 OATA POINTS PER TEST
68 REPLICATE TESTS
DELTA P = 4.20 KIP

CRACK LENGTH

- 1 A i

L
3 £5 ‘30 195 260 25

NUMBER QF CYCTLES X 106

B 4 Rephizate ¢ versus ¢ data set from Virkler's study [19]
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09 07505 Q25 01
245 ) !

195,

CRACK LENGTIH/ X

A

240 300 360

NUMBER OF CYCLES X 103

45 A

0 60 120 180

Fig. 5. Experimental constant-probability crack growth curves generated from data in Ref. [15].

used in certain gas turbine engines, was used {16]. The data consisted of the distribution of
crack size as function of load cvcles for two different load conditions as shown in Figs. 7(a.b).
Analysis similar to that done on the work of Virkler and co-workers was carried out, yielding
two sets of values for B. K and /. They are shown in Table 2. These values are again plotted
vs the crack length position as'shown in Figs. 8(a.b.c) and 9(a.b.c) and the following relation-
ships were obtained.

Test condition 1

B = 0.055/"7°,
K = 1.362 x [0-°-3, (18)
lo = 2.743 x 10°[(r — 1)707" — p=071,

Test condition 11
B = 0.059°7%,
K = 6.68 x 1077~ %, (19)
lo = 1.R43 x 10°[(r — 1)~'4% — p= 139,

Table 1. Values of B, K and 1, for different crack length position
ridx = 0.2 mm)

Crack length 1y B K
position r teyveles) (x 10 %) (x 10 Y

ss 66 s.5 0.617
68 2269 bR 0.856
78 1706 6.0 1.132
&S 1330 6.2 1.446
9s 1066 6.4 1 796
108 873 6.6 2183
118 719 6.8 2604
128 618 6.9 1.063
138 S30 7.1 35858
148 460 7.2 4.086
(RN 403 7.3 4.647
16S 156 7.5 §.249
178 7 7.6 S 8BRS
188 2R3 7.7 6.549
195 238 T8 7.249
208 23 ®.0 T YRS
MA 210 X1 R 78
228 1v2 8.2 9.5847
2358 176 LR 11040
248 162 ¥4 [N
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_ 510 25 S0 75 90 95

NUMBER OF CYCLES X 10“

510 25 S0 75 90 95

(b)

L )

0 10 20 30 40 50

NUMBER OF CYCLES X 10“

Test Condition Il (Ref. [16]).

Table 2. Values of B. K and 1, for different crack length positions
(Ax = 0.1 in)
Crack length lo B K
position (cycles) (x 1074 (x 10 4
Test Condition |
6 10280 1.915 0.946
7 8036 2Ns 1117
8 7203 2.836 1.719
9 S460 1014 2144
10 4169 3143 3.206
" 337 1263 .777
12 2806 1518 4.407
i3 2326 3981 S50
Test Condition 1l

6 19940 2189 0.268
7 28870 2423 0.3
8 24050 2688 0427
Y 14410 2.998 3 367
10 9278 3228 0.66Y
11 7618 130R 1.4
12 6402 1637 1.01°
13 ST 1834 1136
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Fig. 8. Refationship between B. K and /s and crack length position for Test Condition | for Ref.

[16].

By observing eqns (17}, (18). (19) general forms of B. K and [, in terms of crack tength «. could

be written as

IH

An attempt can now be made using

C‘,(l’“.
C:(l”:.
Cifte = A" = ™).

20

egqn (161 1n conjunction with eqn (20 to generate constant

probability curves tor the test conditions of Virkler er al. [15]. These curves could then be

compared to those experimentally obt
growth curve utilizing. as mentioned
plication the Paris~Erdogan cquation

ained in Fig. 5. The first step is to obtain the mean crack
betore, a continuum crack growth equation. In this ap-
in the following form s used to generate such a curve

]

" {

Ai=
" Qe 7

[ M m = (21

121

m - |
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I /
i/ C:354x10"°

. p.05 /]
o @ ///// L

x
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~
5 /
Z 145 ¢
4
x
s L
<
[~ 4
(=)

95t

L L 1 1 " ) —

0 60 120 180 240 300 360
NUMBER OF CYCLES X lD3

45

Fig. 10. The experimental mean crack growth Gurve (P,() = 0.5 and the corresponding the-
oretical curves using the P-F equation with difterent C values.

for A1 2024-T3 the index n is equal to 4 while the parameter C attains values ranging from 3.5
x 107" to 3.79 x 10 '°. Equation (21) was then used to obtain the crack growth curve as
shown in Fig. 10 (C = 3.79 x 10 ', ¢y = 9 mm and Ao = 7Ksi). This curve is viewed here
as equivalent 1o the experimental mean curve. i.e. the P.(i) = 0.5 curve.

The number of cycles corresponding to six discrete crack positions along the Paris—Erdogan
curve was then used as wnput for egns (16) and (20). where P.{i) = 0.5. These six equations
were solved by an iterative technique emploving Newton—-Raphson's method. Converging val-
ues for the six constants were found as followed:

C, = 0.0563: C: =204 x 10 7 Ci=1.022 x 10 7,
i, = 0.298; na = 1917 ny = —1.0.
09075 05 025 O
245 i
{ //‘ { /
i f
195+ /
b g
7 -
z
2 st
g I
95¢r
‘5 A A 1 b, U —
0 60 120 180 260 300 360
NUMBER OF CYCLES x 10°
Fig 11 Theoretical constant-probability crack growth curves generated tor the test condition

reported in Ret (19
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Fig. 12. Error in percent of the proposed model f?or C (in the Paris~Erdogan equation) = 3.79
x 107'°

Making use of these constants. eqns (16) and (20) were again utilized to generate a set of
theoretical constant-probability crack growth curves as shown in Fig. 11. These curves were
compared to those experimentally obtained in Fig. § and results of this comparison in the form
of percentage of error of number of cycles corresponding to similar crack lengths are listed in
Table 3 and summarized in Fig. 12. On the basis of these results the following observations
can be made:

I The present model succeeds in describing the evolution of the crack growth by estimating
the number of cycles required for the crack to advance from one discrete position along the
fracture surface to the following one. The evolution process was carried out for constant-
probability crack growth curves. From these curves the scatter in the crack length at a specific
fatigue as well as the scatter in the number of cycles required to advance the crack to a specific
length, can be estimated. The results of the model. when applied to Al 2024-T3 that have been
subjected to fatigue cycles with a constant stress amplitude, are in agreement with those ex-
perimentally obtained. Average error in the theoretical curves is estimated to be 5%, whic'. is
within the scatter limit of any experimental curve. The accuracy of the model. however, see - s
to depend on the degree of agreement between the crack growth curve obtained using a ¢
tinuum theory and the experimental mean curve. To examine this effect in the present appi
cation, the valtue of the parameter C in the Paris-Erdogan Equation was changed from 3.79 »
10~ '"t0 3.51 x 10~ ' so that the deviation of the theoretical mean curve from the experimental
one is increased as shown in Fig. 10. As a result the average error in the prediction of the
model. as illustrated in Fig. 13, is increased from 5% to 13%.
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Fig. 14. Variation of scatter range as function of crack length position.

2. The degree of scatter in the number of cycles ¢orresponding to a specified state is observed
to decrease as the crack length increases. At higher crack lengths all the cracks require about
the same number of cycles to advance from one discrete position to the following one. This
may then lead to the conclusion that the degree of scatter in the number of cycles to failure
depends on the large scatter observed in the early stages of crack propagation. This is illustrated
in Fig. 14. The effect of scatter associated with **short™’ cracks on the variation in the number
of cycles required for the crack to reach a critical length is currently under investigation by
the authors.

3. The notion that there is a minimum number of cycles required for the crack to advance
from one position on the fracture surface to the next immediate one has been theoretically
derived in this model through the parameter /, in eqn (16). This concept of *‘incubation time™
could be interpreted in relation to the time required for the crack tip propagation threshold
(such as a specified mobile dislocation density. a thermodynamic activation level or any other
criterion) to be satisfied. This concept warrants further study.

CONCLUDING REMARK

A model is presented here describing the crack propagation process as a discontinuous
Markovian process. Based on this. the concept of constant-probability crack growth curves
has been quantitatively derived. With the assumpotion that the crack growth curve given by
any continuum crack growth model coincides with the experimental mean growth curve, the
proposed model has demonstrated that it could sufficiently describe the evolution of the crack
length and associated scatter at any stress level.
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Abstract — This paper is concerned with the application of a mathematical model that describes
the fatigue crack growth evolution and associated scatter in polycrystalline solids. The model has
been built on the basis that an analogy exists between a particular discontinuous Markovian
stochastic process. namely the general pure birth process, and the crack propagation process. The,
crack evolution and scatter were then defined in terms of material, stress and crack-length dependent
properties and crack tip incubation time.

The application of the model is carried out by comparing the constant-probability crack
growth curves generated for three different load levels with those obtained from testing sixty Al
7075-T6 specimens for each load level. A photographic method was utilized to measure the crack-
length in this test program, by recording the residual deformation that accompanies the flanks of
the crack during propagation.

e

INTRODUCTION

PREDICTION OF fatigue crack growth, even under constant amplitude loading, has not been an easy
task. This is mainly because the manner in which the various parameters, such as loads, material
properties and crack geometries, affect the crack propagation is not clearly understood[1]. This,
consequently, had led to a proliferation of hypotheses and laws for describing fatigue crack
propagation (see review articles in refs {1, 2 and 3]). Most of these models are based on concepts
of the continuum theory with the assumption that cracks propagate in an ideal continuum media.
Actual metallic materials, however, are composed of random microstructure described by various
microparameters which can seriously affect the growth of a crack in these materials. As a result,
the deterministic theories can only be accepted as an approximation of the actual random fatigue
crack propagation process.

The use of statistical distributions or probabilistic models thus becomes necessary to make
predictions of crack growth more reliable. The search for the “true™ statistical distribution has
been a difficult task since in any application, the amount of crack-growth data which has been
collected for any particular case would not be sufficient to discriminate between the different types
of distributions[4]. In addition, when a series of tests on identical specimens is performed to
establish the scatter due to material properties, the uncertainties in load values and crack-length
measurements are also included in the scatter data. Due to this limitation, it is difficult to isolate
the scatter associated with material properties in any experiment. One is also hampered by the
lack of an exact physical description of the fatigue process[5]. When taking these two factors into
consideration, any probabilistic or statistical model can identify the variability of crack-length
only in a comparative sense. This means that the absolute values of the variability at a specific
load level predicted by a model may not be equal to those obtained experimentally. However. it
is possible for a ratio of variabilities predicted for two different load conditions to be equal to
that of the experimental results obtained at the same loading conditions. In this, the experimental
errors being independent of the magnitude of the applied loads, are eliminated.

There are basically two kinds of mathematical models in existence to predict the variability
in fatigue crack growth. The first employs a statistical approach in which random variables are
introduced instead of the constants in the appropriate deterministic crack growth equation. While
these models (see, for example refs [6-11]) are simple to use and versatile in application, they
possess some disadvantages. First. all of them are based on Paris law[12] where it has been shown
that other laws like the Forman's law[13] are more applicable. Secondly. the scatter parameters
in these models have no physical description and no attempts have been made to link these
parameters to the micro-structural properties. Lastly, though these models generate crack-growth
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data that match the experimental data reasonably well in some cases, they do not provide any
insight into the nature of the fatigue crack propagation process.

The second approach employs evolutionary methods in which the propagation of the crack
is treated 1n a probabilistic or stochastic sense instead of a statistical one. Making use of a specific
probabulity process, namely the Markovian process, the models with this approach strive to
correlate the properties of this process with those of fatigue crack propagation.

Examples of this approach are the models by Ghonem et al.[ 14, 15], Kozin and Bogdanofi[ 16)
and Aoki and Sakata(17]. The major disadvantage in using these models is the lack of crack-
growth scatter data for different conditions which would have been helpful to check the validity
of the probabilistic assumptions on which these models were built.

The objective of this paper is to examine the results of the stochastic model developed by
Ghonem and Dore[15] when utilized for the prediction of the crack growth evolution, in the same
material, at different loading conditions. Before proceeding on this application, a brief review of
the fundamentals of the model is presented in the next section. This will be followed by the
description of the experimental study and detailed analysis of the results.

REVIEW OF THE PROPOSED MODEL

In this model, the fracture surface is divided into a finite number of crack “states” of equal
width; a probability space of two events was defined with the condition that the crack is in state
“r' after i cycles have elapsed from the instant of reaching “r”. They are, the event that the crack
will remain in the state ‘“r”" and the event that the crack will not be in “r’’. Assuming that the
crack propagation process is irreversible and utilizing the fact that under conditions of constant
amplitude loading the existence of a crack at a particular state depends only on its present
mechanical and microstructural details, a definition for the transition probability was arrived ai.
Using the criteria attached to the discontinuous Markovian process{ 18], a transition intensity (4,)
could be defined. In this approach, A is assumed to be a material parameter which in addition to
being a function of the crack position ‘r", should explicitly depend on both the initial elapsed
cycles i and the incremental duration Ai. The propagation process thus becomes time-
inhomogeneous. This characteristic is a departure from the works of Ghonem and Provan[14]
and Kozin and Bogdanoff[ 16].

The probability equation was then derived and can be written as:

In P(i) = B(ekh — &&) i,

=0 Vi< 0y

(1)

where / is the number of cycles, B and K are crack-length and stress dependent variables. P,(i) is
the probability of the crack being at a state "r" on the fracture surface after / cycles elapse and
I, is the minimum number of cycles required for the crack to advance from one position on the
fracture surface to the next and is also crack-length and stress dependent.

This derivation was made by defining the transition intensity 4, and the Incubation time /,
in the following form.

A, = gek' (2)
L= Cltr = )" = ) (3)

where {4)
B=C r (5)
K=0GCrm

and C,. Cs. Cy. ny. n: and ny are material. applied stress and environment dependent parameters.
These functions (eqs 2 and 3) were verified with the available crack growth scatter data based on
the works of Virkler er «l.[19] and Yang ¢t al.[6].
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As can be seen, identification of the six constants is sufficient to define eq. (1) at any crack
position so as to calculate the associated number of cycles elapsed for any probability (2,(i)) value.
Carrying out this operation for a given probability value at all the crack states in a cumuiative
manner, will generate a crack-position versus number-of-cycles curve representing the probability
with which a crack spends a certain number of cycles at any state.

Here. one should observe that the constants in these mathematical functions can be calculated
by considering the crack growth curve obtained by using a continuum equation as being thc
P.(i) = 0.5 curve. This can be done numerically, and the crack growth scatter at any crack length
and at any fatigue load can be defined without the need to perform large number of fatigue tests.
As mentioned before, the results of the model, when applied to Al 2024-T3 that was
subjected to load cycles of constant amplitude, were in agreement with those experimentally
obtained with the average error in the theoretical curves estimated to be 5%.

In order for the model to have a wider scope of application, it has to be substantiated for
different loading conditions and for different materials. The first step in that direction is the
verification of the model for different loading conditions on the same polycrystalline material. The
experimental set-up and procedure used for this purpose are described in the next section.

DESCRIPTION OF THE EXPERIMENTAL SET-UP

Tests were conducted on Aluminium 7075-T%6 alloy and crack-length versus number of cycles
data were collected at three different stress levels. Each level was tested by using 60 identical
specimens to establish the degree of crack-length scatter during propagation.

A rectangular specimen {320 mm x 101 mm) with a thickness of 3.175 mm and a center-
cracked tension geometry was used throughout the test program. The direction of the center-crack
chosen was perpendicular to the rolling direction of the sheet trom which the specimens were cut
as shown in Fig. 1. The dimensions of the specimen and the crack initiating notch are based on
the ASTM E647 recommendations and are shown in Figs 2 and 3 respectively. The specimen ends
were fixed to the test system by flat end grips whose dimensions are also based on the ASTM
E647 recommendations.

A study was carried out to compare the available crack-length measuring techniques namely,

(a) The Photographic Technique,
(b) The Drop Potential Method.
{c) The Mechanical Method,

{d) The Electrical Technique,

(e) The Acoustic Method.

() The Ultrasonic Method and
{g) The Visual Method.

The results of this study, based on refs [20, 2! and 22] are detailed in ref. [23]. The conclusion
was that the method of photographing the crack during propagation was the one most suited for
the present program. since it is capable of tracing the growth of one point along the crack-front
as opposed to a technique that measures the average position of the crack front.

The photographic technique used in this study depends on the reproduction of a sharp image
of the deformed material along the flanks of the crack to make it possible to locate the crack-tip
image and, consequently. to determine the crack-length with an acceptable degree of resolution.
Since 1t is certain that in ductile materials. a sizable plastically deformed zone accompanies the
crack during its propagation, especially in plane stress applications {see Fig. 4), this zone can be
utilized as an accurate crack-length indicator. An example of this deformed zone is shown in Fig.
S Tt can be seen that the interface between the two fracture surfaces (the crack) is not present
along with this image. As the crack increases in length, leading to a higher crack opening
displacement, the separation of the fracture surfaces becomes visible as a dark line within the
deformed zone. This s shown in Fig. 6.

The testing configuration included a camera and a continuous light source positioned on one
stde of the speaimen. The camera was triggered by an electrical pulse sent by a microcomputer
that kept track of the elapsed number of cycles. Also, a number of shutter speeds, aperture settings,
developing solutions, processing times and film types were experimented with to achieve the best
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Fig. 2. Test specimen in the present study.

reproduction of this shear zone: these parameters are fully described in ref. [23].

A transmitted-light microscope equipped with a horizontal travelling table was used to
determine the length of the image of the plastically deformed zone. The measurements were made
by a digital micrometer having a resolution of 1 um and transferred, after suitable interfacing, to
a microcomputer for acquisition and subsequent analysis (see Fig. 7).

The error in these measurements was determined by comparing an actual crack-length,
measured directly on the specimen’s surface, and the length of its corresponding shear zone. This
comparison, which was made in the cases of | x and 2 x magnifications (see in Table 1} indicated
that the errors associated with the 2 x magnification. which was adopted throughout the test
program. were lower. The region of interest used for recording the shear zone was limited to the
central 28 mm on the 36 mm frame. Using a 2 x magnification. this meant that a maximum of
14 mm of crack growth was photographed in any test.

Al the 180 tests carried out in this study were performed on a closed loop. servo-hydraulic
Material Test System (MTS 880) capable of controlling loads within 0.2%.

Based on ASTM E647 recommendations, the initial crack-length, 4, was chosen to be
10.00 mm: however. the crack-lengths were recorded from a length of 9.00 mm onwards. The final
crack-length {a,) for the purposes ot this test program was limited to 23 mm measured from the
center line of the test specimen. The Joading parameters were then selected so that the crack
transition from the normal mode to the shear mode could not occur before the crack reached this
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specified length, i.e. 23 mm. This condition was imposed on the loading parameters in order to
avoid the problem of defining the crack-length in the shear mode.

Tests were executed at three different stress ratios R; R = P4/ Pmax Where P, is the minimum
ioad level and P,,, is the maximum load level. The loading sequence for fatigue pre-cracking and
the three test load conditions are detailed in Tables 2 and 3, respectively. A frequency of 10 Hz
and a ramp waveform were selected for the loading cycle.

Figure 8 is an example of the results obtained in this test program showing the progress of
the crack length at different loading cycles for one of the loading conditions.

EXPERIMENTAL RESULTS

As mentioned in the previous section sixty specimens were tested for three stress levels and
crack-length (a) versus number-of-cycles (N ); data was recorded from a length of 9 mm to a length
of 23 mm. It may be recalled that the initial crack-length chosen for this test program was 10 mm
and not 9 mm. Data between 9 mm and 10 mm wiil be used for future work on short crack.
behaviour and the comparison between the theoretical probability crack-length versus number of
cycles data. The experimental data will be made from the initial crack-length of 10 mm onwards.
Crack-growth data (a vs N) for. the three stress conditions is shown in Figs 9-11.

The next step in the analysis is the selection of the width-of-crack state for producing
experimental data suitable for comparison with that generated by the mathematical model [15].
As can be seen from Table 1, the maximum error between the shear zone recorded on film and
the crack-length measured from the specimen was estimated to be 0.163 mm. Using a conservative
approach, the maximum error was assumed to be 0.2 mm and this was considered to be the state
width.

[za
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! 7.144 (9/32)
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Table 1. Comparison of the actual crack-length with the length measured from the film (all dimensions in mm)

Measured value Magnification Corrected Actual Error
(M) (m) (9] (4) (4-C)
(C = M/m)

4.882 1.058 4612 4.831 0218
8.047 1.045 7.700 7.755 0.055
11.624 1.045 11.123 11.206 0.083
18.855 1.045 18.043 18.082 0.039
8.208 2.000 4.104 4202 0.098
17.028 2.000 8.514 8677 0.163
15.950 2.000 7975 8.042 0.067
17.692 2.000 8.846 8.924 0.078
19.841 2.000 9.920 9.956 0.035
23.023 2.000 11.50t 11.592 0.090
26.161 2.000 13.080 13.153 0.072
29.803 2.000 14.901 15.018 0.116
31.623 2.000 15811 15.892 0.081

Table 2. Loading sequence for fatigue pre-cracking (all loads in kN)

Load level tifl Load level till
crack was generated crack reached 7.5mm
(20 Hz) C. (20 Hz)
Test
COﬂdlllon Pml Pm”l AP Pﬂlll Pmln AP
[ 25.95 8.30 17.65 26.55 13.55 13.00
1 29.30 7.70 21.60 24.80 10.65 14.15
11 26.30 7.70 18.60 21.50 7.30 14.20
Table 3. Test load conditions (all loads in kN)
Test {oad ievel
(10 Hz)
Test
Condition Pras Prn arp R
I 2279 13.68 911 0.6
i 2225 11.13 112 05
HY 15.19 6.08 9.11 04

_~ Shear Zone

—— - — ——Plastic Zone

‘Plastic Zone
- converted to
Shear 2one

(C)

Fie 4 Zone of plastic deformation in the siamits of the fatigue crack| W]
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Constant-probability crack growth curves

e 6 Photovraph of the shear zone with o visable sepatation ot the ciack surtaces




HY H. GHONEM and S. DORE

[. Crack fength = 9.495 mm 2. Crack length = 10.498 mm
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3 Crack length 10912 mm 4. Crack length = 12031 mm
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Fig. 7. Schematic of the camera-triggering and the crack-length measuring circuits.

MM

CRACK LENGTH,

TEST CONDITIONS

pmax = 22.79 KN
R = 0.6
10 14
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Fig. 9 Crack-length vs number of cycles data from 60 specimens for Test Condition I

For a statc width of 0.2 mm, the zone between 10 and 10.2 mm corresponded to an initial
crack state (ry) of 51 and the zone between 22.8 and 23 mm to a final crack state (r,) of 115,
leading to a total of 65 crack states. Similar to the approach discussed in ref. [15], the number
of cycles spent by a crack in each of these 65 states was calculated by interpolation of the avs N
data. Thereupon, for all the stress levels, the interpolated values for each state in each of the sixty
specimens was arranged in an ascending order. The lowest number of cycles was assigned a
probability of:

() =1—-(x60) | x=1

—-——_
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and so on up until the highest number of cycles whose corresponding probability value was:
P()y=1—-(x60) ; x =60

A probability range of 0.9-0.1 was selected for comparison of the experimental and the
theoretical data. The curves obtained experimentally are plotted in Figs 1214 with the probability
values having decrements of 0.1.

In these figures it is observed that the widest scatter band is associated with the test condition
that produced the smallest mean crack-growth rate, Test Condition II1, while the narrowest scatter
band is associated with the Test Condition II in which the mean crack growth rate is the highest.
This is due to the fact that when loads are high, the influence of the microstructure on crack
propagation is diminished so that the degree of scatter of the a vs N sample curves, in relation to
the mean growth curve, tends to be limited. Similar observations were made by Yang er al.[7]
and this is perceptible in Fig. 15.

THEORETICAL RESULTS

Firstly, the continuum growth law to be utilized in the mathematical model was arrived at
by investigating a number of crack growth equations with known material constants which
recognize the effect of the stress ratio. Forman's equations[13,24] and the equation derived by
Hardath er a/.[25] fall into this category.

Forman's equation is generally written as:

da _ C(AKY
dN (1 - R)K. — AK

(6)

where a is the crack-length, N is the number of cycles, K is the stress intensity factor range, K, is
the critical stress intensity factor, R is the stress ratio and C and n are material constants.
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Fig 12 Expernimental constant-probability crack growth curves generated for Test Condition 1
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Fig. 13. Experimental constant-probability crack growth curves generated for Test Condition II.
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The values of K,, C and n for Aluminium 7075-T6 are listed in ref.[13] as:
K. = 68 Ksi-in' (74 M Pa-m'

C =5 x 10783 U.S. Customary Units
1.63 x 10717 SI Units

n =3
and in ref.[24] as:
K¢ = 40 Ksi-in! (44 MPa-m')

C =213 x 1071 U.S. Customary Units
= 1.60 x 1078 SI Units
n =321

The equation derived by Hardarth et al.[25] is:

da -
m = C(AKYy . ] 0]
- Kq
where K = TR (®)
-5
and Ky = (Smax — So) V@ F o)

Smax 1S the maximum stress, s, is the crack opening stress, \/7a F is the stress intensity parameter
for specimen configuration, K, is the maximum stress intensity factor, K, is the fracture parameter
[81 Ksi-in! (89 M Pa-m')], C and n are material parameters.

C = 3.83 x 1073 SI Units
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Of the above two laws, the one provided by Forman er al.[13] was selected because it is
based on data obtained from different laboratories as opposed to the equation of Hudson et al.[24]
that was derived after correlation with one set of experimental data. The growth law of Hardarth
et al.[25] was also not utilized because the present mean experimental growth rate was different
from that predicted by the law, by an order of magnitude for all the three stress levels.

Having defined the continuum growth law and the corresponding material constants, the six
constants C,, C», G, n,, m,, ny were next calculated by obtaining their converged values using
Newton-Raphson’s method.

The six constants for each load condition are:

I II I
G 0.015127 0.010064 0.010105
C, 1.9371 x 107¢ 3.4055 x 107¢ 1.9758 x 107¢
G 1.5940 x 106 1.0888 x 106 2.3151 x 108
n 0.3000 0.7957 0.8514
" 1.4946 1.4991 1.3501
n, —0.7000 —0.6820 ~0.8537

Following the analysis presented in ref. [15] the theoretical probability curves were plotted making
use of these constants, in Figs 16-18. ’

The percentage error of the number of cycles is plotted in Figs 19-21. The average value off
the absolute errors was found to be 7%, 5% and 8% for the 7, Il and the III load conditions,
respectively.

A remark is warranted on the six constants that clharacterize the crack growth scatter.
Though these constants depend on the load parameters, no attempt has been made to derive an
explicit relationship. In fact, there is no need for an explicit relationship since they are computed
directly from the continuum growth law.

CONCLUSIONS

(1) The mathematical model developed here provides a physical description for fatigue crack
propagation as well as capability of predicting crack growth scatter at different stress levels.
While the model uses the crack growth data from a continuum law as its input, it does not
depend on a specific law. The only requirement is that such a law must be a correct
representation of the mean growth curve. The model has been validated for two aluminium
alloys Al 2024-T3 and Al 7075-T6 subjected to four different stress levels and is in the process
of being applied to steel and titanium alloys.

The scatter data recorded for the second load condition (AP = 11.12kN, P_,, = 22.25 kN)
of the experimental program has been observed to be the least widespread when compared
with that obtained from other load conditions with lower values of AP. This can be attributed
to the following phenomenon. The crack transition from a specific state is governed by a
critical threshold energy at the crack tip. When such a threshold is satisfied in one cycle or
an accumulation of several cycles. depending on the load condition and crack-geometry, the
crack tip can then advance from its present state to the following one. Hence for larger loads
and longer crack-lengths, the probability that this propagation threshold is satisfied increases
rapidly with the number of elapsed load cycles while, for smaller loads and shorter crack-
lengths, the probability of discrete crack growth advancement increases gradually. In this
hypothesis the degree of scatter in achieving the required threshold energy reflects on the
degree of scatter of crack growth. Fractographic analysis of fracture surfaces shows that. at
the same crack-length. more striations per unit distance are present along the fracture surface
of specimens subjected to a large load level (Test Condition 1. see Fig. 22b) than in the
specimens subjected to a lower load level (the Test Conditions | and 11, see Figs 22a and
22c). It is known that ductile fracture striations are formed due to a change in the orientation

[
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of the fracture surface along a specific slip plane[26, 27]. Therefore, a denser striation pattern
1s observed at loading conditions associated with higher growth rates because numerous
orientation changes take place in a unit distance of the fracture surface. It follows that the
energy required for these changes is achieved more frequently under these conditions. Using
this analogy at a macroscopic level, it can be said that the crack tip propagation threshold
is also achieved more often. These observations may act as another factor that substantiate
the fact that larger loading conditions result in a smaller degree of crack-growth scatter.

The changes in the orientation of the fracture surface along a specific slip-plane are
reflected as the waviness of the crack path on the specimen surface. This is shown in Figs
23(a) and (b). In view of the explanation given previously, increased waviness of the crack
path {(measured in terms of the horizontal distance required for the crack propagation direction
to change) is related to increase in the externally applied load levels and thus the degree of
crack growth scatter at a particular load level could be related to the wavines of the crack
path. Quantification of this dependence has not been attempted here.

The phenomenon of crack-tin branching was also observed. Typical examples are shown
in Fig. 24(a) and (b). While the existence of branching certainly contributes to the degree of
crack growth scatter due to random loss of propagation energy at the crack tip. the extent
of this contribution is not known. Both the effect of the waviness and that of the crack-tip
branching on the degree of crack growth scatter are under study by the authors.

(3) The use of the present model is directed towards two applications. The first is the constant
amplitude loading which, while representing a simple load spectrum, does occur in practice;
e.g. pressurization cycles in transport aircraft cabins, rotating bending stresses in generators,
thermal stress cycles in pressure vessels. This application has been examined in this paper.
The second application is the variable amplitude loading which could be a two-step load
sequence {\ow-high, high-low) or a spectrum of random loads. Variable amplitude loading is.
however, a complex problem due to the fact that the crack tip damage per cycle under such
loading is not only controlled by the stress amplitude of the current cycle, but also by the
preceding load history. It is generally agreed[28-30] that this dependence i1s only transient
in nature and should not exist after a certain duration of cycling.

Reflecting this concept on the fundamentals of the constant-probability crack growth
model, one observes two areas where modifications can be made to account for the history
dependence of the crack growth process due to load changes. The first, is the assignment of
appropriate mathematical functions for the variables B, K and /, to take this phenomenon
into consideration. The Markovian approach in the model is not violated because even though
the crack tip conditions depend on the loading history, the propagation process is affected
only by the present crack tip conditions. On the basis of the existing works on variable
ampiitude loading, it can be said that the mathematical functions cannot be arrived at by
simple superimposition. However, quantification of the crack growth rates for vanable
amplitudes, even in the deterministic sense has not been accomplished so far. Only if that is
achieved, will modifications for 8, K and /;, be possible.

The other area where modification must be made is the consideration of initial crack-
length (a,). In the present modei. gy was a constant as a result of an imposed experimental
condition. Thus, the model provides a distribution of the number of cycles required for
a crack to reach a specified discrete state from g,. No attempt has been made to consider
an initial crack-length distribution and the manner in- which it will affect the constant
probability curves. Attempts to interpret the constant-probability growth curves in terms of
a distribution of crack states after a specified number of cycles have elapsed from the instant
the crack reached u, were also not made. Only this type of a distribution is useful for vanable-
amphtude loading application because the history of the fracture process i1s described 1n terms
of the number of cvcles. The recognition of this distribution is an important step since nt
represents the mitial crack-length configuration which 1s a necessary boundary condition for
the new load spectrum.
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Abstract—This paper details a stochastic, time-inhomogeneous model that serves as a theoreti-
cal basis for the prediction of crack growth and its variability under constant-amplitude loading.
Crack evolution is described as a set of constant probability curves, each of whose points possess
equal probability of advancing from one position to another forward position. This probability is
governed by a transition intensity parameter for which two mathematical interpretations are
examined. A simplified crack growth rate equation, employing one of the definitions, is derived
and applied to A17075-T6 matenial for different loading conditions. Results of this application
are compared with those experimentally obtained.

INTRODUCTION

THE WORK of Ghonem et al.[1, 2] describes a probabilistic crack growth model based on the
assumption that fracture history can be established by employing a particular discontinuous
Markovian process which takes into account the fundamental aspects of the crack growth
mechanism. This approach leads to the description of the sample curve of the crack growth
process in terms of a constant-probability criterion. When considering that the crack growth
curve given by any continuum crack growth model coincides with the median growth curve, the
probabilistic model would then be sufficient to describe the evolution of the crack length and
associated scatter at any stress level[3,4]. The present paper is an attempt to extend the
concepts of the model by including a different definition for the transition intensity probability of
the growth process. This will lead to the derivation of a simple and explicit probabilistic crack
growth rate equation similar in structure to the Paris—Erdogan equation.

The first part of the paper focuses on the constant probability crack growth curve concept
and its model derivation, while the second part will deal with the application of the proposed law.

MODEL

The basic model is based on the assumpion the crack front in the crack propagation stage, as
shown in Fig. 1, can be approximated by a large number M of arbitrarily chosen points «a,
a=1,..., M. Each of these points in terms of the theory of probability, identifies a statistical
“trial” or “experiment” conducted under identical conditions. The fracture state of the ath trial
at cycle i" is given by the crack length or random variable “a;(x,, x,, x3) whose evolution with
time shall then be established.

a a a
‘1 12 ‘m
L o aka
x 4 ‘2
2? ;
bl ‘ ~ 1
3 L////////

1

1

| OIRECTION OF

1 CRACK PROPAGATION

Fig 1. Schematic of crack front positions along the fracture surface.
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The following observations can be made regarding “a;:

1. The evolution of “g, in the x,, x; and x; directions are statistically independent of each
other.

2. The statistical evolution of “a;(x,) is different from those of “a;(x;) and *a;(x;) in that the
former consistently increases while the latter may be described as a type of random-walk
phenomenon.

3. For an external load applied in the x, direction, the crack evolution in the x, and x;
directions are orders of a lesser magnitude than that in the x, direction.

On the basis of these observations this model is limited to the evolution of “a;(x;) by assuming
that the crack growth distributions of “a;(x;) and *a;(x;) can be described by Dirac-Delta
functions. So, “a; will hereafter be referred to as a;.

Due to the built-in limitations of all experimental techniques in crack measurement, the
observed value of a; can only be specified within a range of:

x<a<x+Ax,
where Ax is the experimental error and x is the crack position calculated as (see Fig. 2):
x=rdx; r<r<r. (1)
Here “r” identifies the obser;/able zbne or §t;te along tﬁe fracu;re surface; rq is the initial
propagation state, r, is the state just prior to catastrophic failure of the specimen and

r, 2, ..., I are the intermediate zones, all zones having the same width.
Given that the crack is in state r, then after i cycles from the instant of reaching r, one of

A
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Fig. 2. Schematic of the proposed fatigue crack propagation along the fracture surface states.




Constant-probability crack growth curves 687

two events will occur. Either a, will remain in state r (event 'E;) or a; will not be in state r (event
‘E;). The following points should now be noted.

(a) The crack propagation process is irreversible (i.e. there is no rewelding of crack
surfaces). Hence the crack, if it is not in state r after i cycles, must exist in a state greater than r

(b) Since itis not possible for the crack to propagate from one state to another state withoui
penetrating the adjacent one, the crack can be identified by the number of cycles (i) required tc
advance from a given state to the immediately following state.

Based on these observations, events 'E; and *E; can be seen as elements of a measurable
space (1) (see ref. [3]) and the following definition of the probability measure of a; becomes
possible. At any fatigue cycle i, the probability that 4, is in state r, i.e. the probability of 'E;, is
defined as:

Pl{a,e'E;} = P{x < a; < x + Ax}, 2)

P(E) = P,(i). (3)
Therefore, the probability of a; not falling within s, i.e. the probability of *E; is,
PCE)=1-P.(i). 4

It can be seen that, P,(i) should continuously decrease as the number of cycles increases. Before
proceeding further to identify the parameters that define P,(i), it is necessary to make these
comments.

Under conditions of constant amplitude loading, where no overloading effects are con-
sidered, the growth of a crack from a particular state depends only on its present mechanical and
microstructural details. More specifically, the probability of a; propagating from state rto r+1
in the cycle interval (i, i + Ai) depends on the event ("E;) and is independent of the events prior to
i, 'E;, j < i). To elaborate, let ("' E;) be the event of a; jumping to (r+ 1) from r in the interval
(i, i+ Ai). This represents a future event if (rg) is an event in the present. Clearly, the future
event is conditional on the occurrence of the present event. Given that the present has occurred,
the probability of the future is not affected by the probability of the occurrence of the past ('E;.
J < ). Also, the occurrence of ("E;) precludes the occurrence of the (°E;, j < i, s > r) due to the
irreversible nature of the crack growth process.

The above feature is similar to that of a pure birth Markovian process in which the future is
determined only by the present and not by the past, and in which the discrete space variable
never decreases in magnitude with increase of time. This analogy helps to define a transition
probability that is also a Markovian property and introduce the condition probability function
that governs the crack growth process as:

P{""'E,J'E,....,'E,,...,"Eo} = P{""'EAil'E}}
= P,(i); i, (5)

where P,(i) is the transition probability linking the probability measures of two consecutive
states ‘s and “t" (+=r+1) along the fracture surface and “/” denotes the conditional
probability. This property, together with the evolution of a; within the two event sample space
{€1), describes a discrete space continuous time Markov process.

Since the analogy to the Markovian process has been shown, the criteria attached to this
process can be assumed to be valid for the crack growth as well.

1. The probability that a; propagating to a state different from rin Ai cycles, where Aiis very
small, after i cycles elapse in state r is:

P.(Ai) = P{'EAI/'E,} + 0(Ai),
=AAI+0(A);, t=r+1. (6)
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Here, A, is a positive variable indicating the probability transition rate. It describes the transition
rate from state 7 to r+ 1 in i cycles. '

In this analysis, A, is assumed to be a material parameter which in addition to being a
function of crack position r, should depend explicitly on both initial cycle i, and duration Ai. The
propagation process thus becomes time-inhomogeneous.

2. The corresponding probability that a; will be in state r during the.cycle interval Ai is:

P,(Ai) = P{"Esi/"El} + 0(A)
= (1 - A,Ai) +0(Ai). 0

3. The probability that a; is in a state different from r+1 is:

P.(Ai) = P{'Es/Ei}
=0(ai); o+l (8)

The time interval Ai is so small that the probability of advancing from r to a state greater than
r+1 is almost zero. By definition, O(Ai) is such that,

Now, let
A='E, and B='"E,,.
Then
AN B="E;,.
Since
P(AN B)= P(B/A) - P(A).
Therefore

P{E.vai} = P{'En/'E} - PUE}. 9
Substituting eqgs (6), (7) and (8) in (9) we get,
P{'E;.a;} = (1 - AAi) - P{'E;}+0(Ai), (10)
which can be written as
P.(i+Ai)=(1-AAQ) - P.(D)+O(A)). (an
By transposing the term P,(i), dividing by Ai and passing to the limit Ai— 0, eq. (11) becomes

M'—' —AP,(i). (12)
di

The solution of this equation is:

In P,(i)=—[)«,di+L., (13)

where L, is a constant.
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This equation describes the crack growth probability from siate r, after i cycles elapse, in
terms of the constant L, and the transition rate A, which is discussed below.

The parameter A, was introduced in this model as the transition intensity by which g,
propagates from one state to the next. Adopting the notion that the crack growth process is a
discrete one, the crack transition from a specific state can be viewed as being governed by a
critical threshold energy at the crack tip. When such a threshold (which is environmental,
material, stress and crack-length dependent) is satisfied by cyclic energy accumulation, a crack
tip transition can be said to occur. Therefore the larger the cycle duration associated with the
crack in a specific state, the greater the probability that the propagation threshold °» satisfied and
the greater the probability that the crack advances to the following state.

The transition intensity, A,, can be assumed to have several physical interpretations,
however, the primary concern at this point is whether A, is a material property present only when
there is application of cyclic loads or whether it exists even when there is no cycling.

If A, is a property that owes its existence to cyclic loading, then it could represent a
dislocation accumulation rate, a microvoid growth rate, a ductility exhaustion rate or a rate at
which any physical phenomenon occurs in the grain structure of a polycrystalline material to aid
the propagation of a crack. In that case, the magnitude of A, should be zero at any instant there is
no cycling. Specifically, its magnitude should be equal to zero at i = 0, the instant at which the
load cycling is about to begin, after the crack has reached a particular state, r. Keeping in mind
the fact that A, should monotonically increase with i, the following expression for A, can then be
chosen.

A (i) = L(r)i®", (14)

where L(r) and a(r) are functions of the crack state.

If, on ihe other hand, A, is a property present even when there is no cyclic loading, the
physical analogy for A, would be completely different. A, would then represent a dislocation
density in the microstructure or a microvoid density in the microstructure of a material. Thus
while the property A, does increase in magnitude during cycling, it does not cease to exist when
the cycling is absent. Hence, from this point of view, A, should have a value corresponding to
i = 0, the instant at which the cycling is about to begin after the crack has reached a specified
state, r. The following expression could then be considered.

A = L(r)e"". (15)

From a purely mathematical point of view expression (15) was first selected to be utilized in the
present model. By substituting eq. (15) in (13), it yields:

InP(i)=-Be“ +L,, (16)

where B=L/C.
The upper and lower limits of P.(i) in the above equation are:

1=P(i)=0. (17

The form of eq. (15) suggests that i has a lower boundary that satisfies the upper limit condition
of P,(i). Equation (16) thus becomes:

In P(iy= B(eCo~e®) i>1I,

(18)
=0 i<l
where the parameters B. C and [y, the incubation time, are found to be:
B=Cia; (19;
C=Ca (20

ern 30:5-1

———
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and

Iy= Cs[at: —as] (21)

C\, C;, Ca, ny, n; and n; are material-, stress- and environment-dependent parameters.

The ‘lication of the above eq. (18) to different steel and aluminum alloys is detailed in
ref. (3].

In this paper the interpretation concerning A,, as given in eq. (14), will be examined. By
substituting this equation in (13) and setting the upper and lower limits of P,(i) to:

1= P (i) =0,
one can arrive at the following solution
Ai = A(=In P(i))?, (22)
where
1+ a t/(l1+a) 1
A—(T) .. and B-Al+a'

A and B are considered here to be material-, stress- and crack-position dependent.

The above equation identifies the duration of fatigue cycles required for a crack at position r
to propagate with a specific constant probability P,(i), to a position r+ 1 along the fracture
surface. By calculating such durations for states r, to r,_,, the history of the entire constant-
probability crack growth curve can be obtained. If an assumption is made that the crack growth
curve generated by a continuum model coincides with the median growth curve, i.e., the
P,(i) = 0.5 curve, parameters A and 8 can be determined and eq. (22) becomes fully defined for
a particular material and a particular constant amplitude stress condition. The work described
below explains the procedure for determining the expressions of both A and B.

Following the approach detailed in ref. [3], work of Virckler et al.[5], which combines crack
growth data of 68 replicate tests of A12024-T3, shown in Fig. 3(a) was arranged in 9 constant
probability crack growth curves as shown in Fig. 3(b). Data points representing cycle intervals
corresponding to similar discrete crack propositions along three different constant-probability
curves; P,(i) = 0.05, 0.5 and 0.95, were used as input to eq. (22) to determined the parameters A
and B. Using curve regression analysis parameter 8 was found to be constant for all state
positions with a value of 0.166. The parameter A varied as function of r in a pattern shown in
Fig. 3 which is fitted into the form:

A=15x10"((r=1)"'=r Y. (23)
Similarly. data of Yang et al.[6], Fig.4, which consist of the distribution of crack size as function
of load cycles for IN-100 tested for two different load conditions, were used to obtain the
expressions for A and 8. These expressions were obtained as:

Test condition [

A=43%100(r—1)070= 07,
(24)
B =0.155. (average)

Test condition 11
A=406x10%(r—-1)"*=r1%,

(25)
B =0.266. (average)

‘—
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Fig. 3(b). Experimental constant-probability crack growth curves generated from the data in Fig. 3(a);
Ax =02 mm.

By observing the forms of A and B, as expressed in eq. 23-25, obtained from two different types
of alloys, one can conclude that, while 8 seems to depend mainly on the material and stress
condition, a general form of A depends on the crack position and can be written as:

A=Clr=1)"-r"),

where C, and vy are material- and stress-dependent parameters. Therefore. one can write eq. (21)
as:

Ai= C((r=1)" = r)(~In P(i))®

G

Axy[Ax’(r— 1)Y= Ax*r"}(-in P)? (26)
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since the crack length a, can be written as @, = Ax - -, thus, eq. (26) becomes
Ai= Cya}-,—a})(-In P)®, (27)

where C, = C,/Ax". One should remember here that Ai is the number of cycles counted from
the instant the crack tip reaches state r and P is the probability that the crack will not propagate
from state r to the following state within Ai cycles. For the same value of P,(i), i.e. operating on a
single crack growth curve, eq. (27) can be manipulated as follows:

Aiy =iy~ 0= Cy(ad - al)(~In P)®,
where ao is a constant that represents the initial crack length.
Aiy =iy~ iy = Co(al — a))(~In P)®

A =i —i,=CyaX,~a))(-InP)*
By summing Aiy +Ai; + - - - + Ai, one obtains

i, = Cy(ad~-a))(~Iln P)2.
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Differentiating both ends w.r.t. i; thus:
da
= ——n YV (- B
i Cz( ya; di)( in P)?.

This equation can be rearranged as:

Z—‘: = Cya®(-In P)78, (28)

where

-1
C"E;, and 8=1-y.

By multiplying and dividing eq. (28) with Ao?®#®; where Ao is the stress range, one can obtain:

d
E? = CAc**nba®(~In P)8, 29)

where C = C3/Ac**n”.
Equation (29) could then be written as:

= GAK(-in P)* (30)
which represents a crack growth rate equation for a crack progressing from one state to the
following state along the fracture surface with a constant probability P.

As mentioned before a basic assumption in the work of ref. [2] is that the median of the
constant probabiiity crack growth equation, i.e., the curve with P,(i) =0.5, can be described
using a continuum crack growth law. By invoking this assumption the validity of eq. (30) could
be examined using results of tests carried out on A17075-T6 specimens (3). In this work the
crack length versus number-of-cycles was obtained for three different stress conditions. Each
condition was tested by using sixty identical center-notched flat specimens (320.67 X 50.8 .
3.175 mm) resulting in sixty crack-growth curves, each consisting of ._ * points generated
through the use of an automated photographic technique detailed in ref. [3]. The results of this
study and the corresponding experimental constant probability crack growth curves are shown in
Figs 5-8. Following an argument discussed in the above mentioned study, Forman’s eq. (6) was
selected as a suitable continuum crack-growth law since it recognizes the effect of the stress ratio
R and is well documented for A17075-T6; it is written as

da _  CAK™
di (1= RNK.~ Knax)'

(31D

where

K. =74MPam'?

C=1.63x10""

m = 3.065.
The results of the comparison of this equation with those experimentally obtained for P,(i) = 0.5
are shown in Fig. 9; they indicated close agreenient.

The above equation could now be equated to eq. (30) in which P,(i) = 0.5. In this equality
the parameter 8 is set equal to m of Formann equation, i.e., § =3.065. Using an iterative

e ———————————————————————————————————
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numerical technique that employs the Newton-Raphston method, values of C; and B for the
three different load conditions were obtained:

Test condition I Test condition 11 Test condition 111

G 2.64x107* 1.65x107* 1.42x10™
B 0.195 0.203 0.299

The parameters C; and B were then substituted in eq. (30) to generate, for each load condition,
the entire spectrum of the constant probability crack growth rate curves. These curves were
compared to those experimentally obtained in Fig. 8. Results of this comparison, in the form of
percentage-of-error of number-of-cycles corresponding to a similar crack length, are sum-
marized in Fig. 10. These results show that the error of the model under test conditions 1, 11 and
II1 are +2.5%, £5% and +8% respectively. This degree of error is similar to that obtained when
A, is expressed by eq. (15), see ref. [3]. Furthermore, a comparison between both the theoretical
and experimental cumulative distribution function for selected crack lengths, at the three
different loading conditions, are shown in Fig. 11; they indicate a very close agreement.

T 20
7 /p z 0.5
- /P = 0.9
-d///‘P = 0.1
ERROR 0
L . TEST
-1 CONDITION [
-
-20 1 T T T T 1
10 16 22
20 ]
i P =0.5
/
i P =0.9
ERROR 0 A ~p = 0.1
% //
TEST

CONDITION 11

20 1

-

- /P = 0.5

ERROR 0 — ,P =09
%

-/-p = 0.1

—*/EST/

— CONDITION I11
-20

T LN 1 1 1 1
10 16 22

CRACK LENGTH, mm

Fig. 10 Etror in per cent between constant-probability crack growth curves generated using the
mathematical model and those obtained experimentally in Figs 5-7
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Fig. 11. Cumulative distribution functions for three crack length positions; A = 12 mm, B = 15 mm, and
C =21 mm obtained for the three test conditions in Figs 5-7.

CONCLUSIONS

This paper has outlined the principle of a stochastic model aimed at describing crack growth
and its variability due to random characteristics of the microstructure of polycrystalline solids.
The model was built by developing an analogy to a discontinuous Markovian process. This
treatment leads to the calculation of the cycle duration required for a point along the crack tip to
advance with a particular probability to a forward state along the fracture surface. This
probability is governed by a transition intensity parameter, A,, which is viewed here as material-
and cycle-dependent. In the absence of a definite physical interpretation of this parameter, it has
been given two mathematical expressions which differ in that one expression, A,, possesses a
value when Ai approaches zero, while in the other expression A, becomes zero as Ai— 0. The
paper examined the latter condition which then led to the derivation of a crack growth rate
equation in which a probability term is explicit. Comparison of the results of this equation, when
applied to A17075-T6 for three different loading conditions, indicates agreement with experi-
mental results obtained by the author for the same loading conditions.
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APPENDIX D

Potential Drop Measurement

1. Potential Drop

The crack measurement technique used in this report is the d.c.
electrical potential drop method which is a widcly accepted method
of monitoring crack initiation and growth in controlled lab tests. In
its simplest form it involves passing a constant current through the
specimen and then measuring the electrical potential across the crack
plane. As the crack propagates the resistance of the specimen, and
hence the potential drop (P.D.) increases due to the reduction in
uncracked cross sectional area of the specimen.

The P.D. technique has many advantages over optical
measurements of crack length. It provides a total measurement
inclusive of crack front curvature, and because it does not require
visual accessibility, tests may conducted in any sealed environment.
The output is continuous which permits automatic data collection and
processing together with a 24 hours usage of testing machine
capacity. The block diagram of our d.c. potential system is illustrated
in Fig. D-1.

In order to obtain a relation of potential and crack length, which is
independent of current and temperature variations, the potential
measurements ar‘e modified and compared using the ratio of two

measurement Vg, which is expressed as:
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Vi-V)
VR =

V-V

where V; and V;, are two potential measurements as shown in Fig D-

2 and V? and Vg are the null voltage of V; and V,respectively

measured when current is shut off, both of which account for the
thermocouple effects. Vg instead of V; is used here to allow
compensation for temperature, current and material variations with
time.

The crack length in calibration was observed by optical microscope
as shown in Fig. D-3. The relationship between d.c. potential and
crack length for the specimen shown in Fig. D-4 was obtained
through calibration test in which data pairs of crack length and
potential were recorded during crack propagation. The dimension of

the specimen used in this study is shown in Fig. D-5.

2. Computer hardware and software

The control system has constructed around a IBM-PC. Machine
control, data acquisition and storage, and output of results are
affected via a computer interface which includes DASH-16, a
multifunction high speed analog/digital I/O expansion board for the
IBM Personal Computer.

Tl;e test machine cyclic load and frequency are controlled through
a 410 Digital Function Generator.

The application software has been written in BASIC and its
operation is summarized in the flow diagram shown in Fig. D-6. The

programs are also attached to this appendix in Fig. D-7.
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D-7 Flow chart of the main program used in the experiment

Start

Clear

v

Define

Segment

Address
Load DASH-16

v

Dimension
and

Initialize . .
DASH-16

]

Set Function
Keys

Input required data

v

input required

data

152




| .

From Last Page

'

Load
Charnt

'

Set Sample
Rate and
Scan Limits

v

Set Time to
00:00:00

Output
Breakpoint

Voltage to
Fun. Generator

v

Output
Setpoint
Voltage

y

Take
Function
Generator
Gate High

;

Start Test

153




From last page

Set min,max
values on
each channel

Y

Delay

v

Start DMA

Do A/D
conversions
Trasnsfer Data

y

Read converter
Set value for
change

7

Print out
time and
count

Pchange>changa

m=m+65535

e

154




.= .,

From last page

!

Count=m+
change+cs
Pchange=change

v

Transfer data
from memory
to arrays

y

Reset timel

Return
to null or

Determine max,
min on channels

‘

Take average and
correct voltage

correct voltage
signal

v

Print out
corrected voltage
max,min voltage
max,min load
max,min strain

y

155




om last

Determine
voltage ratio

I

Add total current
and previous
voltage ratio

y

Add previous
count and
current count

y

cascade arrays
of count and
voltage ratios

-

Average previous
and current
voltage ratio

Defermin crack
length from previous
and current voltage

ratios and calibration

equation

fint out coun
and voltage

Determin change
in crack length and
count

w




From last page

Print out crack
length, voltage ratio
current overstress

Print to
data file3

v

K>conver
Transfer rapid
reading data
add vollages a
take average of group
Print to Print to
data file1 data file2
Increament K
L
N=N+1
y
157




Print
current is off
don't overstress

y

Write digital
output to turn
current off

Y

Time3=Timer

y

Reset channel
m

_d

—® O rt

Sum voltages an

igke gvg‘r’aggﬁ J

Set channels not
used to zero

Print out null
voltage

i




From last page

Write digital output
to turn_current on

Pslope=slope

“Read counter

Read counter
Time3=Timer

y

Bcount=change
set scan rate for
rapid reading

v
Do A/D conversios
and transfer data
to memory

Read counter 1

hange-Bcoun
<6

159




[From last page |
L7

Output overstress
voltage to Function
Generator

[ccount=change |

Read counter  jeg—————

ange-ccoun
<num

Output normal .
breakpoint voltage
to Functior. Generator

'

Delay for rapid
readings
ml=mi+1

Set scan rate to
normal reading rate

;

Time1=timer

Set null to use to
correct rapid readings

160




Take gate low to
suspend trest

Promote user
to change normal
or overload voltage

Promote user for
new normal voltage

Promote for new
overload voltage

Promote user
to resume

161




7

Read counter
Boount=change

¥

ead counter

Change-Bcoun
<2

Output overstressl
output

"

Change-Ccount
<num
Y

Output normal
braeakpoint voitage

K=conver1+100
Timel=Timer

162

Read counter jg———




)

Output gate low
to Function Generator

Print file names

(=)

163




PROGRAM

164




Program for test control

10 "THIS IS THE FINAL VERSION OF THE TEST PROGRAM
20 ° AS OF 6-02-88 AND

50 * IS STORED AS NEWNULI11.BAS

100 ° THIS NEWNUL11.BAS IS FOR COLLECTING AND RECORDING THE DATA
FROM

120 °  MTS MACHINE,EXTENSOMETER AND POTENTIONAL DROP
150 °

200 °

250 °

300 CLEAR

350 DEF SEG=0

400 SG=256*PEEK(&H511)+PEEK(&H510)

450 SG=SG+49152!/16

500 DEF SEG=SG

550 BLOAD "DASH16.BIN",0

m r

650 'INITIALIZE PROGRAM

700 °

750 DIM DIO%(4),DT%(2000!),CH%(2000!),DA VG(10),DSUM(10), VOLT(10),BSUM(100)
800 DIM PVR(100),PCOUNT(100)

850 DIO%(0)=832

900 DIO%(1)=2

950 DIO%(2)=1

1000 MD%=0

1050 FLAG%=0

1100 DASH16=0

1150 CALL DASHI16 (MD%,DI0%(0),FLAG%)

1200 IF FLAG% <>0 THEN PRINT "INITIALIZATION ERROR #";FLAG% :STOP
1250 ML=0)

1300 N=1

1310 ON ERROR GOTO 22000

1350 KEY (5) ON

1400 KEY (6) ON

1450 KEY (2) ON

1470 KEY (9) ON

1500 KEY (10) ON

1550 ON KEY (5) GOSUB 19050

1600 ON KEY (6) GOSUB 17100

1650 ON KEY (2) GOSUB 14900

1670 ON KEY (9) GOSUB 21000

1700 ON KEY (10) GOSUB 18100

1750 CLS:INPUT"NAME FOR NORMAL RATE DATA FILE";F$
1800 INPUT"NAME FOR FIRST RAPID RATE DATA FILE",G$
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1850 INPUT"NAME FOR SECOND RAPID RATE DATA FILE";H$

1900 INPUT"NAME FOR THIRD RAPID RATE DATA FILE"E$

1950 INPUT"STARTING NUMBER OF CYCLES";CS

2000 OPEN F$ FOR APPEND AS #1

2050 OPEN G$ FOR OUTPUT AS #2

2100 OPEN H$ FOR OUTPUT AS #3

2150 OPEN E$ FOR OUTPUT AS #4

2160 METALS$=LEFT$(F$,1)

2170 IF METALS$="T" OR METALS$="t" THEN
C1=-17.12129:C2=-15.72081:C3=9.748079:C4=175.5466.C5=29.25841

2180 IF METALS$="S" OR METALS$="s" THEN
C1=-12.41537:C2=-6.551828:C3=13.0006:C4=61.65978:C5=169.0192

2190 PRINT TAB(10)"The coefficients:"

2200 PRINT TAB(10) USING" #HHHHE#HE#H#",C1,C2,C3

2210 PRINT TAB(10) USING" #HHH:#HHEHE",C4,C5

2250 INPUT"SETPOINT LOAD AS % OF FULL RANGE";SETPOINT

2300 SET=4095*(SETPOINT/50)

2350 SET2=SET

2400 INPUT"NORMAL LOAD AS % OF FULL RANGE";NORM

2450 NORM1=4095*(NORM/50)

2500 NORM2=NORM!1

2550 INPUT"OVERLOAD AS % OF FULL RANGE";OVER

2600 OVER1=4095*(OVER/50)

2640 NUM=1:X=20:LL%=1:UL%=5:RATE=5000: CONVER=1000:RATE2=32000:SEC=1
2650 PRINT"NUMBER OF OVERLOAD CYCLES";NUM

2700 PRINT"TIME BETWEEN AUTOREADINGS";X

2750 PRINT"LOWER CHANNEL LIMIT";LL%

2800 PRINT"UPPER CHANNEL LIMIT";UL%

2850 PRINT"NORMAL READING RATE";RATE

2900 PRINT'NUMBER OF NORMAL RATE READINGS PER SAMPLE";CONVER
2950 PRINT"RAPID READING RATE";RATE2

3000 PRINT "SECONDS OF RAPID READINGS";SEC

3050 CONVERI=SEC*RATE2

3100 XX=0

3150 K=CONVER1+100

3200 INC=((UL%-LL%)+1)*10

3205 INPUT"HYDRAULICS ON";DUMB

3210 INPUT"FAN ON";DUMB

3215 INPUT"DC POWER SUPPLY DCR40-35A AT 10 AMPS",DUMB

3220 INPUT"CURRENT SWITCH, DC POWER SUPPLY AND OSCILLOSCOPE
ON";DUMB

3225 INPUT"EVENT COUNTER SET TO ZERO FOR A NEW TEST";,DUMB

3230 INPUT"TEST MACHINE RANGE SET TO DESIRED NUMBER (10,20,50 OR
100)";DUMB

3250 INPUT "PUSH RETURN TO BEGIN TEST";DUMB$

3260 LPRINT'NORMAL RATE DATA FILE: ";F$

3265 LPRINT"STARTING NUMBER OF CYCLES: ";CS
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3270 LPRINT"FIRST RAPID RATE DATA FILE: ";G$

3275 LPRINT"SECOND RAPID RATE DATA FILE: ";H$

3280 LPRINT"THIRD RAPID RATE DATA FILE: ";E$

3285 LPRINT"SETPOINT LOAD AS % OF FULL RANGE: ";SETPOINT
3290 LPRINT"NORMAL LOAD AS % OF FULL RANGE: ";NORM

3295 LPRINT"OVERLOAD AS % OF FULL RANGE: ";OVER:.LPRINT:LPRINT
3300 FOR I=1000 TO 10 STEP -10

3350 SET3=(SET*10)/1

3400 MD%=15:DI0%(0)=1:DI0%(1)=SET3:FLAG%=X

3450 CALL DASH16 (MD%,DI0%(0),FLAG%)

3500 IF FLAG% <>0 THEN PRINT "ERROR IN D TO A #";FLAG% :STOP
3550 NEXT I

3600 °

3650 °

3700 'INITIALIZE COUNTER

3750 °

3800 MD%=11:DI0%(0)=-1

3850 CALL DASH16 (MD%,DI0%(0),FLAG%)

3900 IF FLAG% <>0 THEN PRINT "COUNTER ERROR #"; FLAG% :STOP
3950 °

4000 °

4050 'SET SAMPLE RATE

4100 °’

4150 SAMPLE RATE= 1,0,0/DIO%(0)*DIO%(1)

4200 DIO%(0)=2

4250 DIO%(1)=500000!/RATE

4300 MD%=17

4350 CALL DASH16 (MD%,DIO%(0),FLAG%)

4400 IF FLAG% <>0 THEN PRINT "ERROR IN TIMER #";FLAG% :STOP
4450 °

4500 °

4550 'SET SCAN LIMITS

4600 °

4650 ’

4700 °

4750 DIO%(0)=LL%

4800 DIO%(1)=UL%

4850 MD%=1

4900 CALL DASH16 (MD%,DI0%(0),FLAG%)

4950 IF FLAG% <>0 THEN PRINT "ERROR IN SCAN LIMITS #";FLAG% :STOP
5000 ’

5050 °

5100 * START AND RUN TEST

5150’

5200 TIME$="00:00:00"

5220 TIMEI=TIMER

5250 MD%=15:D10%(0)=0:DIO%(1)=NORM2:FLAG%=X
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5300 CALL DASH16 (MD%,DI0%(0),FLAG%)

5350 IF FLAG% <>0 THEN PRINT "ERROR IN D TO A #";FLAG% :STOP
5400 MD%=15:D10%(0)=1:DI0%(1)=SET2:FLAG%=X

5450 CALL DASH16 (MD%,DIO%(0),FLAG%)

5500 IF FLAG% <>0 THEN PRINT "ERROR IN D TO A #";FLAG% :STOP
5550 MD%=13:D10%(0)=1:FLAG%=X

5600 CALL DASH16 (MD%,D10%(0),FLAG%)

5650 IF FLAG% <>0 THEN PRINT "ERROR IN DIGITAL OUT #",FLAG% :STOP
5750 IF N>(60/X) THEN GOSUB 13100

5780 IF N>(60/X) THEN LPRINT USING"#HiHHHE HHHHHHHE  #HHEE  #HSHHEHERR
## #HEHAAEAE COUNT, TIMES,CL,PSLOPE,SLOPE

5800 IF N>(60/X) THEN N=1

5830 IF N>(60/X) THEN LPRINT USING"##HHi  #HHHHHEHE B0 EHHERHEH
JHhHHEHREHE , COUNT, TIMES,CL,PSLOPE,SLOPE

5850 FOR I= LL% TO UL%

5900 DSUM(D=0

5950 MIN()=10000

6000 MAX(I)=-10000

605C BMIN(1)=10000

6100 BMAX(I)=-10000

6150 NEXT 1

6200 IF (TIMER-TIME1)<(X-.25) THEN GOTO 6200

6250 GOSUB 6350

6300 GOTO 8200

6350 'START DMA

6400 DIO%(0)=CONVER

6450 DIO%(1)=&H2000

6500 DIO%(2)=1

6550 DIO%(3)=0

6600 MD%=6

6650 CALL DASH16 (MD%,DI0%(0),FLAG%)

6700 IF FLAG% <>0 THEN PRINT "ERROR IN DMAN #";FLAG% :STOP
6750 GOSUB 6850

6800 GOTO 7050

6850 MD%=12:DI0%(0)=1:DI0%(1)=0

6900 CALL DASH16 (MD%,D10%(0),FLAG%)

6950 IF DIO%(1)<0 THEN CHANGE=-1-DIO%(1) ELSE CHANGE=65535!-DIO%(1)
7000 RETURN

7050 PRINT "

7100 PRINT "

7150 PRINT USING"  ELAPSED TIME = #HHHHH ## SEC™, TIMER
7200 TIMES=TIMER

7250 IF PCHANGE>CHANGE THEN M=M+65535!

7300 COUNT=M+CHANGE+CS

7350 "PRINT USING "###t####.",PCOUNT(1)

7400 PCHANGE=CHANGE

7450 PRINT USING” NUMBER OF CYCLES = ######" COUNT
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7500 PRINT "

7550 TIME2=TIMER

7600 DEL=(CONVER/RATE)+.05

7650 IF (TIMER-TIME2)<DEL THEN GOTO 7650

7700 'RETRIVE DATA

7750 DIO%(0)=CONVER

7800 DIO%(1)=&H2000

7850 DIO%(2)=0

7900 DIO%(3)=VARPTR(DT%(0))

7950 DIO%(4)=VARPTR(CH%(0))

8000 MD%=9

8050 CALL DASH16 (MD%,DIO%(0),FLAG%)

8100 TIME1=TIMER

8150 RETURN

8200 'DISPLAY DATA

8250 FOR I=0 TO (CONVER-1)

8300 DSUM(CH%(I))=DSUM(CH%(I))+DT%(I)

8350 IF MAX(CH%(I))<DT%(I) THEN MAX(CH%(1))=DT%()
8400 IF MIN(CH%(1))>DT%(I) THEN MIN(CH%(I))=DT%(I)
8450 NEXT I

8500 FOR I=LL% TO (LL%+1)

8550 DAVG(I)=DSUM(1)/(CONVER/((UL%-LL%)+1))

8600 VOLT(I)=(DAVG(1)/2048)*10

8650 CVOLTI)=VOLT()-NVOLT()

8700 PRINT USING"  VOLTAGE CHANNEL## = ### ##### VOLTS";I,CVOLT(I)
8750 NEXT I

8800 FOR I = (LL%+2) TO UL%

8850 VMAX(I)=(MAX(I)/2048)*10

8900 VMIN(I)=(MIN(I)/2048)*10

8950 NEXT I

9000 NORM2=NORM2-((((MAX(5)-MIN(5))*4)-NORM1)/2)
9050 SET2=SET2-(((MIN(5)*4)-SET)/2)

9100 PRINT USING" MAX-MIN VOLTAGE FG i R R
VOLTS";VMAX(3),VMIN(3)

9150 MAXLOAD = VMAX(5)*5

9200 MINLOAD = VMIN(5)*5

9250 PRINT USING" MAX-MIN LOAD HiH Hit# R
KN";MAXLOAD MINLOAD

9300 MAXSTRAIN =VMAX(4)

9350 MINSTRAIN =VMIN(4)

9400 PRINT USING" MAX-MIN COD HitH Hit#
MM";MAXSTRAIN,MINSTRAIN

9450 VR=CVOLT(LL%+1)/CVOLT(LL%)

9500 TPVR=0

9550 TPCOUNT=0

9600 TCVR=0

9650 TCCOUNT=0
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9700 PVR(5)=VR

9750 PCOUNT (5)=COUNT

9800 FOR NN=1 TO 5

9850 TPVR =TPVR+PVR(NN-1)

9900 TCVR=TCVR+PVR(NN)

9950 TPCOUNT=TPCOUNT+PCOUNT(NN-1)

10000 TCCOUNT=TCCOUNT+PCOUNT(NN)

10050 NEXT NN

10100 FOR NN=0 TO 4

10150 PVR (NN)=PVR(NN+1)

10200 PCOUNT (NN)= PCOUNT(NN+1)

10250 NEXT NN

10300 APVR=TPVR/5

10350 ACVR=TCVR/5

10400 APCOUNT=TPCOUNTY/5

10450 ACCOUNT=TCCOUNTY/5

10500 CL=C1+(C2*(VR))+(C3*(VRA2))+(C4*(VRA3))+(C5*(VRA4))

10550 PCL=C1+(C2*(APVR))+(C3*(APVRA2))+(C4*(APVRA3))+(C5*(APVRA4))
10600 CCL=C1+(C2*(ACVR))+(C3*(ACVRA2))+(C4*(ACVRA3))+(C5*(ACVR"4))
10650’LPRINT USING"###.##HH#", VOLT(1),CVOLT(1),NVOLT(1),VOLT(2),
CVOLT(2),NVOLT(2),VR,CL

10700 'LPRINT USING "#HHHiHH#.",COUNT, TIMES

10750 PRINT #1,USING "#HHHHHH #";COUNT, TIMES

10800 PRINT#1,USING"### #####",CVOLT(1),NVOLT(1),CVOLT(2),NVOLT(2),
VR,CL

10810 PRINT #1,USING"##t #HH#"; VMAX(3),VMIN(3),VMAX(4), VMIN(4),
VMAX(5),VMIN(5)

10850 DELCL=CCL-PCL

10900 DELCOUNT=ACCOUNT-APCOUNT
10950 SLOPE=DELCL/DELCOUNT

11000 PRINT USING" CRACK LENGTH
11050 PRINT USING" VOLTAGE RATIO
11100 "LPRINT DELCL,DELCOUNT

11150 PRINT"  CURRENT dA/dN = ";SLOPE

11200 PRINT" OVER STRESS dA/AN = ";PSLOPE

11210 IF FLAG(1)=0 AND CL>17 THEN FLAG(1)=1:FLBEEP=1

11220 IF FLAG(2)=0 AND CL>23 THEN FLAG(2)=1:FLBEEP=1

11230 IF FLAG(3)=0 AND CL>28 THEN FLAG(2)=1:FLBEEP=1

11233 IF FLAG(4)=0 AND CL>40 THEN FLAG(4)=1:FL40=1

11237 IF CL>45! THEN GOSUB 19050

11240 IF FLBEEP=1 THEN BEEP:BEEP:PRINT"* * * * CHECK dA/dN BEFORE
OVERSTRESS (Hit F9 to stop message) * * * *":BEEP:BEEP

11245 IF FL40=1 THEN BEEP:BEEP:PRINT"* * * THIS TEST WILL AUTOMATICALLY
END AT 45mm * * *"

11250 "LPRINT SLOPE

11260 PRINT #1,SLOPE,PSL.LOPE

11300 °

### #i##",CL
H#HE HEHE VR

o
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11350 "THIS PORTION TRANSFERS RAPID READINGS
11400 TAND AVERAGES IN GROUPS OF 10

11450 °

11500 IF K>CONVER1 THEN GOTO 12750

11550 DIO%(0)=(INC*30)

11600 DIO%(1)=&H3000

11650 DIO%(2)=K

11700 DIO%(3)=VARPTR(DT%(0))

11750 DIO%(4)=VARPTR(CH%(0))

11800 MD%=9

11850 CALL DASH16 (MD%,D10%(0),FLLAG%)

11900 IF FLAG% <>0 THEN PRINT "ERROR DATA RETRIVAL #";FLAG% :STOP
11950 FOR Y = 0 TO (INC*29) STEP INC

12000 FOR B =Y TO (Y+(INC-1))

12050 BSUM(CH%(B))=BSUM(CH%(B))+DT%(B)

12100 NEXT B

12150 FOR L = LL% TO UL%

12200 BAVG(L)=BSUM(L)/10 :

12250 RVOLT(L)=(BAVG(L)/2048)*10

12300 BVOLT(L)=RVOLT(L)-NNVOLT(L)

12350 BSUM(L)=0

12400 IF ML=1 THEN PRINT #2, L, BVOLT(L),SCOUNT,XX
12450 IF ML=2 THEN PRINT #3, L, BVOLT(L),SCOUNT,XX
12500 IF ML=3 THEN PRINT #4, L, BVOLT(L),SCOUNT, XX
12550 NEXT L

12600 XX=XX+1

12650 NEXT Y

12700 K=K+(INC*30)

12750 N=N+1

12800 GOTO 5250

12850 °

12900 °

12950 "THIS PORTION TURNS OFF THE CURRENT

13000 "TAND TAKES NULL READINGS

13050 °

13100 PRINT "

13150 PRINT ""

13200 PRINT "***¥*x**x CURRENT IS OFF WAIT DO NOT OVERSTRESS **¥**xx"
13250 MD%=13:D10%(0)=3:FLAG%=X

13300 CALL DASH16 (MD%,DI0%(0),FLAG%)

13350 IF FLAG% <>0 THEN PRINT "ERROR IN DIG OUT #".FLAG% :STOP
13400 TIME3=TIMER

13450 FOR I = LL% TO UL%

13500 NSUM(DH)=0

13550 NEXT I

13600 IF (TIMER-TIME3)<10 GOTO 13600

13650 GOSUB 6350
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13700 FOR I=0 TO (CONVER-1)

13750 NSUM(CH%(D))=NSUM(CH%(D))+DT%(I)

13800 NEXT I

13850 PRINT " "

13900 FOR I=LL% TO UL%

13950 NAVG(I)=NSUM()/(CONVER/((UL%-LL%)+1))
14000 NVOLT(D)=(NAVG(I)/2048)*10

14050 NEXT 1

14100 NVOLT(UL%)=0!

14150 NVOLT(UL%-1)=0!

14200 NVOLT(UL%-2)=0!

14250 FOR I= LL% TO (LL%+1)

14300 PRINT USING" NULL VOLTAGE CHANNEL## = ##.#### VOLTS";,LNVOLT(D)

14350 NEXT 1

14400 PRINT " "

14450 PRINT "*** CURRENT BACK ON WAIT TILL AFTER NEXT READING ***"
14500 MD%=13:DI0%(0)=1:FLAG%=X

14550 CALL DASH16 (MD%,DI0%(0),FLAG%)

14600 IF FLAG% <>0 THEN PRINT "ERROR IN DIG OUT #",;FLAG% :STOP
14650 RETURN

14700 °

14750 °

14800 'TAKE RAPID READINGS WITH OVERSTRESS
14850 °

14900 PSLOPE=SLOPE

14950 GOSUB 6850

15000 COUNT=M+CHANGE+CS

15050 SCOUNT=COUNT

15100 GOSUB 6850

15150 TIME3=TIMER

15200 BCOUNT=CHANGE

15250 DIO%(0)=2

15300 DIO%(1)=500000!/RATE2

15350 MD%=17

15400 CALL DASHI16 (MD%,D10%(0),FLAG%)

15450 DIO%(0)=CONVERI1

15500 DIO%(1)=&H3000

15550 DIO%(2)=1

15600 DIO%(3)=0

15650 MD%=6

15700 CALL DASH16 (MD%,DIO%(0),FLAG%)

15750 GOSUB 6850

15800 IF (CHANGE-BCOUNT)<6 GOTO 15750

15850 MD%=15:D10%(0)=0:D10%(1)=OVER1:FLAG%=X
15900 CALL DASHI16 (MD%,DIO%(0),FLAG%)

15950 CCOUNT=CHANGE




16000 GOSUB 6850

16050 IF (CHANGE-CCOUNT)<NUM THEN GOTO 16000

16100 MD%=15:D10%(0)=0:DI0%(1)=NORM1:FLAG%=X

16150 CALL DASH16 (MD%,DIO%(0),FLAG%)

16200 IF FLAG% <>0 THEN PRINT "ERROR IN A TO D #".FLAG% :STOP
16250 IF (TIMER-TIME3)<(SEC+.05) THEN GOTO 16250

16300 ML=ML+1

16350 K=0

16400 DIO%(0)=2

16450 DIO%(1)=500000!/RATE

16500 MD%=17

16550 CALL DASH16 (MD%,DIG%(0),FLAG%)

16600 IF FLAG% <>0 THEN PRINT "ERROR IN TIMER #";FLAG% :STOP
16650 TIME1=TIMER

16700 FOR I=LL% TO UL%

16750 NNVOLT(I)=NVOLT()

16800 NEXT 1

16850 RETURN 5250

16900 °

16950 °

17000 *'THIS PORTION SUSPENDS OPERATION

17050 °

17100 INPUT "DO YOU WANT TO STOP THE FUNCTION GEN.(Y,N)";GEN$
17110 LPRINT:LPRINT:LPRINT"FUNCTION KEY 6 HAS BEEN ACTIVATED.":BEEP
17120 LPRINT" HAS THE FUNCTION GENERATOR BEEN STOPPED? ".GEN$
17150 IF GEN$="N" THEN GOTO 17350

17200 MD%=13:D10%(0)=0:FLAG%=X

17250 CALL DASH16 (MD%,DI0%(0),FLAG%)

17300 IF FLAG% <>0 THEN PRINT "ERROR IN DIGITAL OUT#";FLAG% :STOP
17350 INPUT "DO YOU WANT TO CHANGE THE SETPOINT,NORMAL LOAD OR
OVERLOAD (Y,N)?";V$

17400 IF V$="N" THEN GOTO 17800

17410 INPUT "NEW SET POINT LOAD AS % OF FULL RANGE:";SETPOINT
17415 LPRINT"NEW SET POINT LOAD AS % OF FULL RANGE: ";SETPOINT
17420 SET2=4095*(SETPOINT/50)

17430 SET=SET2

17450 INPUT"NEW NORMAL LOAD AS % OF FULL RANGE:";NORM

17455 LPRINT"NEW NORMAL LOAD AS % OfF FULL RANGE: ";NORM
17500 NORM1=4095*(NORM/50)

17550 NORM2=NORM1

17600 INPUT"NEW OVERLOAD AS % OF FULL RANGE:";OVER

17605 LPRINT'"NEW OVERLOAD AS % OF FULL RANGE: ";OVER

17650 OVER1=4095*(OVER/50)

17800 INPUT "PRESS ENTER TO RESUME";DUMB

17810 BEEP:LPRINT:LPRINT

17850 RETURN 5250

17900 °
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17950 °

18000 'THIS PORTION OVERSTRESSES WITHOUT RAPID READINGS
18050 °

18060 PSLOPE=SLOPE

18100 GOSUB 6850

18150 BCOUNT=CHANGE

18200 GOSUB 6850

18250 IF (CHANGE-BCOUNT)<2 GOTO 18200

i 18300 MD%=15:D10%(0)=0:D10%(1)=OVER 1:FLAG%=X

18350 CALL DASH16 (MD%,D10%(0),FLAG%)

18400 GOSUB 6850

18450 CCOUNT=CHANGE

18500 GOSUB 685C

18550 IF (CHANGE-CCOUNT)<NUM THEN GOTO 18500

18600 MD%=15:D10%(0)=0:DI0%(1)=NORM1:FLAG%=X

18650 CALL DASH16 (MD%,DI0%(0),FLAG%)

18700 K=CONVER1+100

18750 TIME1=TIMER

18800 RETURN 5750

18850 °

18900 °

18950 * THIS PORTION ENDS THE TEST

15000 °

19050 MD%=13:D10%(0)=0:FLAG%=X

19100 CALL DASH16 (MD%,D10%(0),FLAG%)

19150 IF FLAG% <>0 THEN PRINT "ERROR IN DIGITAL OUT #";FLAG% :STOP
19200 FOR I=1 TO 100

19250 SET3=SET/1

19300 MD%=15:D10%(0)=1:DI0%(1)=SET3:FLAG%=X

19350 CALL DASH16 (MD%,D10%(0),FLAG%)

19400 IF FLAG% <>0 THEN PRINT "ERROR IN D TO A #"FLAG% :STOP
19450 NEXT I

19500 MD%=15:DI0%(0)=1:D10%(1)=0:FLAG%=X

19550 CALL DASH16 (MD%,DI0%(0),FLAG%)

19600 PRINT ™"

19650 PRINT ™"

19’7m PRINT 13 3 sk 2 o 3 3 e e 3k 3 o sk 3 ok 3 3 ke ok e ok ok sk 3k e sl 3k e e o e s ok e e ok ke ke ke o ko ok dkk ok !

19750 PRINT " YOUR NORMAL RATE DATA FILE IS NAMED "F$
19800 PRINT " YOUR FIRST RAPID RATE DATA FILE IS NAMED "G$
19850 PRINT " YOUR SECOND RAPID RATE DATA FILE IS NAMED "H$
19900 PRINT ” YOUR THIRD RAPID RATE DATA FILE IS NAMED ";E$
19950 PRINT "  WRITE THEIR NAMES DOWN !t »

Z(XXX) PRINT"*************************************************"

20050 CLOSE

20060 LPRINT USING"##HHHHEH  ##H#HH #HH  #H BHHHHHEEHE #8 S TEST
ENDED";COUNT,TIMES,CL,PSLOPE,SLOPE

20070 LPRINT:LPRINT:LPRINT:LPRINT
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20100 END
21000 FLBEEP=0:RETURN
21010 END

22000 PRINT"ERROR: ";ERR;" OCCURED":LPRINT"ERROR: ";ERR;" OCCURED":GOTO
19050
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Program for calibration

50 'THIS PROGRAM IS STORED AS NEWCAL.BAS

100 ’used foi calibration

150’

200 °

250 °

300 CLEAR

350 DEF SEG=0

400 SG=256*PEEK(&H511)+PEEK(&H510)

450 SG=SG+49152!/16

500 DEF SEG=SG

550 BLOAD "DASHI16.BIN",0

6(X) bl

650 'INITIALIZE PROGRAM

700 ° : : - :

750 DIM DIO%(4),DT%(2500"),CH%(2500!),DAVG(10),DSUM(10),VOLT(10),
BSUM(100)

800 DIO%(0)=832

850 DIO%(1)=2

900 DIO%(2)=1

950 MD%=0

1000 FLAG%=0

1050 DASH16=0

1100 CALL DASH16 (MD%,DI0%(0),FLAG%)

1150 IF FLAG% <>0 THEN PRINT "INITIALIZATION ERROR #";FLAG%:STOP

1200 ML=0

1250 N=7

1300 KEY (6) ON

1350 KEY (5) ON

1400 KEY (10) ON

1450 ON KEY (6) GOSUB 9200

1500 ON KEY (5) GOSUB 9900

1550 ON KEY (10) GOSUB 4700

1600 INPUT"NAME FOR DATA FILE";F$

1650 OPEN F$ FOR OUTPUT AS #1

1700 INPUT"NORMAL LOAD AS % OF FULL RANGE";NORM

1750 NORM1=(4095*(NORM/100))*2

1800 INPUT"LOWER CHANNEL LIMIT";LL%

1850 INPUT"UPPER CHANNEL LIMIT",UL%

1900 INPUT"READING RATE";RATE

1950 INPUT"NUMBER OF READINGS PER SAMPLE";CONVER

2000 XX=0

205° X=10

2100’
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2150 ’INITIALIZE COUNTER

2200 °

2250 MD%=11:DI0%(0)=-1

2300 CALL DASH16 (MD%,DIO%(0),FLAG%)

2350 IF FLAG% <>0 THEN PRINT "COUNTER ERROR #";FLAG% :STOP
2400 °

2450 °

2500 'SET SAMPLE RATE

2550 °

2600 'SAMPLE RATE= 1,000,000/DI0%(0)*DIO%(1)

2650 DIO%(0)=2

2700 DIO%(1)=500000!/RATE

2750 MD%=17

2800 CALL DASH16 (MD%,DI0%(0),FLAG%)

2850 IF FLAG% <>0 THEN PRINT "ERROR IN TIMER #";FLAG% :STOP
2900 °

2950 °

3000 'SET SCAN LIMITS

3050 °

3100 °

3150 °

3200 DIO%(0)=LL%

3250 DIO%(1)=UL%

3300 MD%=1

3350 CALL DASH16 (MD%,DI0%(0),FLAG%)

3400 IF FLAG% <>0 THEN PRINT "ERROR IN SCAN LIMITS #",FLAG%:STOP
3450 °

3500 °

3550 * START AND RUN TEST

3600 °

3650 MD%=15:DI0%(0)=0:DIO0O%(1)=NORM1:FLAG%=X

3700 CALL DASH16 (MD%,DIO%(0),FLAG%)

3750 IF FLAG% <>0 THEN PRINT "ERROR IN D TO A #"'FLAG% :STOP
3800 MD%=13:DI0%(0)=1:FLAG%=X

3850 CALL DASH16 (MD%,DIO%(0),FLAG%)

3900 IF FLAG% <>0 THEN PRINT "ERROR IN DIG OUT #"FLAG% :STOP
3950 TIME$="00:00:00"

4000 FOR I= LL% TO UL%

4050 DSUM(D=0

4100 NEXT I

4150 TIME1=TIMER

4200 IF N>(60/X) THEN GOSUB 7600

4250 IF N>(60/X) THEN N=2

4300 IF N=3 THEN PRINT " **** OK F10 TO TAKE READING *¥**"

4350 IF N=3 THEN PRINT" F6 TO SUSPEND F5 TO END"
4550 IF (TIMER-TIME1)<(X-.25) THEN GOTO 4550
4600 N=N+1
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4650 GOTO 4150

4700 GOSUB 4800

4750 GOTO 6600

4800 'START DMA

4850 DIO%(0)=CONVER

4900 DIO%(1)=&H2000

4950 DIO%(2)=1

5000 DIO%(3)=0

5050 MD%=6

5100 CALL DASH16 (MD%,DI0%(0),FLAG%)

5150 IF FLAG% <>0 THEN PRINT "ERROR IN DMAN #":FLAG% :STOP

5200 GOSUB 5300

5250 GOTO 5550

5300 MD%=12:DI0%(0)=1:DIO0%(1)=0

5350 CALL DASH16 (MD%,DI0%(0),FLAG%)

5400 IF FLAG% <>0 THEN PRINT "ERROR IN READING COUNTER #";FLAG%
S10P

5450 IF DIO%(1)<0 THEN CHANGE=-1-DIO%(1) ELSE

CHANGE=65535!-DIO%(1)

5500 RETURN

5550 PRINT ""

5600 PRINT ""

5650 PRINT USING" ELAPSED TIME = ###i#tHi ## SEC"; TIMER

5700 IF Y>CHANGE THEN M=M+65535!

5750 COUNT=M+CHANGE+CS

5800 Y=CHANGE )

5850 PRINT USING" NUMBER OF CYCLES = ####H##":COUNT

5900 PRINT ""

5950 TIME2=TIMER

6000 DEL=(CONVER/(1000000!/RATE))+.05

6050 IF (TIMER-TIME2)<DEL THEN GOTO 6050

6100 'RETRIVE DATA

6150 DIO%(0)=CONVER

6200 DIO%(1)=&H2000

6250 DIO%(2)=0

6300 DIO%(3)=VARPTR(DT%(0))

6350 DIO%(4)=VARPTR(CH%(0))

6400 MD%=9

6450 CALL DASH16 (MD%,DIO%(0),FLLAG%)

6500 TIME1=TIMER

6550 RETURN

6600 'DISPLAY DATA

6650 FOR I=0 TO (CONVER-1)

6700 DSUM(CH%(1))=DSUM(CH%(I))+DT%(I)

6750 NEXT 1

6800 INPUT"CRACK LENGTH":CL

6850 CL=CL+15.2
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6855 LPRINT

6860 LPRINT USING" CL HHt AR, CL

6900 FOR I=LL% TO UL%

6950 DAVG(D=DSUM()/(CONVER/((UL%-LL%)+1))

7000 VOLT(D=(DAVG(I)/2048)*10

7050 CVOLT(I)=VOLTI)-NVOLT()

7100 PRINT USING" VOLTAGE CHANNEL## = #iHt.#HH# VOLTS"],
CVOLT(D)

7150 PRINT #1, CVOLT(),

7200 NEXT 1

7225 VR=CVOLT(2)/CVOLT(1)

7230 PRINT USING" VR i HEHEE' VR

7235 INVR=1/VR

7240 PRINT USING" INVR #HERERE S INVR

7245 LPRINT USING" VR #iHEHERE' VR

7246 LPRINT USING" INVR #i HHA INVR

7250 PRINT #1,COUNT,CL,VR

7300 RETURN 4000

7350 °

7400 ’

7450 *'THIS PORTION TURNS OFF THE CURRENT

7500 TAND TAKES NULL READINGS

7550 °

7600 PRINT "

7650 PRINT ""

7700 PRINT "*****¥* CURRENT IS OFF WAJT *¥*¥xkkk

7750 MD%=13:DI0%(0)=3:FLAG%=X

7800 CALL DASH16 (MD%,DIO0%(0),FLAG%)

7850 IF FLAG% <>0 THEN PRINT "ERROR IN DIG OUT #";FLAG% :STOP

7900 TIME3=TIMER

7950 FOR I = LL% TO UL%

8000 NSUM(D=0

8050 NEXT I

8100 IF (TIMER-TIME3)<10 GOTO 8100

8150 GOSUB 4800

8200 FOR I=0 TO (CONVER-1)

8250 NSUM(CH%(I))=NSUM(CH%(I))+DT%(I)

8300 NEXT I

8350 PRINT " "

8400 FOR I=LL% TO UL%

8450 NAVG(D)=NSUM(I)/(CONVER/((UL%-LL%)+1))

8500 NVOLT(D=(NAVG(I)/+2048)*10

8550 NVOLT(UL%)=0!

8600 NVOLT(UL%-1)=0!

8650 PRINT USING" NULL VOLTAGE CHANNEL## = ##.##H## VOLTS" ],

NVOLT()
8700 NEXT I
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8750 PRINT " "

8760 MD%=13:DI0%(0)=1:FLAG%=X

8770 CALL DASH16 (MD%,DIO%(0),FLAG%)

8780 IF FLAG% <>0 THEN PRINT "ERROR IN DIG OUT #";FLAG% :STOP
8800 PRINT "*** CURRENT BACK ON WAIT 10 SEC FOR NEXT READING ***"
8850 PRINT " "

8900 PRINT " "

8950 RETURN 4250

9000 ’

9050 °

9100 'THIS PORTION SUSPENDS OPERATION

9150 °

9200 MD%=13:DI0%(0)=0:FLAG%=X

9250 CALL DASH16 (MD%,DIO%(0),FLAG%)

9300 IF FLAG% <>0 THEN PRINT "ERROR IN DIG OUT #";FLAG% :STOP
9301 INPUT"DO YOU WANT TO CHANGE THE DELTA LOAD (Y,N)";V$
9302 IF V$="N" THEN GOTO 9350

9303 INPUT "NEW DELTA LOAD";NORM

9304 NORM1=4095*(NORM/50)

9305 MD%=15:D10%(0)=0:DI0%(1)=NORM1:FLAG%=X

9306 CALL DASH16 (MD%,DI0%(0),FLAG%)

9307 IF FLAG% <>0 THEN PRINT "ERROR IN D TO A #";FLAG% :STOP
9350 INPUT "PRESS ENTER TO RESUME";DUMB

9400 MD%=13:DI10%(0)=1:FLAG%=X

9450 CALL DASH16 (MD%,DIO%(0),FLAG%)

9500 IF FLAG% <>0 THEN PRINT "ERROR IN DIG OUT #";FLAG% :STOP
9550 RETURN 4000

9600 °’

9650 °

9700 °

9750 °

9800 * THIS PORTION ENDS THE TEST

9850 ’

9900 MD%=13:DI0%(0)=0:FLAG%=

9950 CALL DASH16 (MD%,DI0%(0),FLAG%)

10000 IF FLAG% <>0 THEN PRINT "ERROR IN DIG OUT #";FLAG% :STOP
10050 PRINT ™"

10100 PRINT ""

10150 PRIINT "% % e sk e sk ok sk s s s ke ke ke ol e o e o sk e e ke ok e s sk e e ke ek ok sk sk ok e o o s sk 1

10200 PRINT " YOUR DATA FILE IS NAMED ";F$

10250 PRINT ©  WRITE THE NAME DOWN 1 "

103(X) PRINTT 7738k ok ook s s sk de e 3 e e e o o e e ok ke ke e 3 ok ok e e e e e o e e sk e sk s skok ek ek

10350 CLOSE

10400 END
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